Skip to main content

Analysis of Histone Deacetylase-Dependent Effects on Cell Migration Using the Stripe Assay

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

  • 2094 Accesses

Abstract

For normal embryonic development/morphogenesis, cell migration and homing are well-orchestrated and important events requiring specific cellular mechanisms. In diseases such as cancer deregulated cell migration represents a major problem. Therefore, numerous efforts are under way to understand the molecular mechanisms of tumor cell migration and to generate more efficient tumor therapies. Cell migration assays are one of the most commonly used functional assays. The wound-healing assay or the Boyden chamber assay are variations of these assays. Nearly all of them are two-dimensional assays and the cells can only migrate on one substrate at a time. This is in contrast to the in vivo situation where the cells are faced simultaneously with different surfaces and interact with different cell types. To approach this in vivo situation we used a modified version of the stripe assay designed by Bonhoeffer and colleagues to examine mechanisms of axonal guidance. The design of this assay allows cells to decide between two different substrates offered at the same time. Utilizing alternating neuronal substrates for migration analyses we can partially mimic the complex in vivo situation for brain tumor cells. Here we describe the detailed protocol to perform a modified version of the stripe assay in order to observe substrate-dependent migration effects in vitro, to analyze the effect of Rho-dependent kinases (ROCKS), of histone deacetylases (HDACs) and of other molecules on glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24

    Article  CAS  PubMed  Google Scholar 

  2. Gibbons HM, Dragunow M (2010) Adult human brain cell culture for neuroscience research. Int J Biochem Cell Biol 42(6):844–856

    Article  CAS  PubMed  Google Scholar 

  3. Filipovic R, Kumar SS, Bahr BA, Loturco J (2014) Slice culture method for studying migration of neuronal progenitor cells derived from human embryonic stem cells (hESC). Curr Protoc Stem Cell Biol 29:1H.7.1–1H.7.14

    Article  Google Scholar 

  4. Walter J, Kern-Veits B, Huf J, Stolze B, Bonhoeffer F (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101(4):685–696

    CAS  PubMed  Google Scholar 

  5. Walter J, Henke-Fahle S, Bonhoeffer F (1987) Avoidance of posterior tectal membranes by temporal retinal axons. Development 101(4):909–913

    CAS  PubMed  Google Scholar 

  6. Knoll B, Weinl C, Nordheim A, Bonhoeffer F (2007) Stripe assay to examine axonal guidance and cell migration. Nat Protoc 2(5):1216–1224

    Article  PubMed  Google Scholar 

  7. Mertsch S, Oellers P, Wendling M, Stracke W, Thanos S (2013) Dissecting the inter-substrate navigation of migrating glioblastoma cells with the stripe assay reveals a causative role of ROCK. Mol Neurobiol 48(1):169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mertsch S, Thanos S (2014) Opposing signaling of ROCK1 and ROCK2 determines the switching of substrate specificity and the mode of migration of glioblastoma cells. Mol Neurobiol 49(2):900–915

    Article  CAS  PubMed  Google Scholar 

  9. Oellers P, Schroer U, Senner V, Paulus W, Thanos S (2009) ROCKs are expressed in brain tumors and are required for glioma-cell migration on myelinated axons. Glia 57(5):499–509

    Article  PubMed  Google Scholar 

  10. Wang C, Chowdhury S, Driscoll M, Parent CA, Gupta SK, Losert W (2014) The interplay of cell-cell and cell-substrate adhesion in collective cell migration. J R Soc Interface 11(100):20140684

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maxwell GD (1976) Substrate dependence of cell migration from explanted neural tubes in vitro. Cell Tissue Res 172(3):325–330

    Article  CAS  PubMed  Google Scholar 

  12. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  13. Koutsounas I, Giaginis C, Theocharis S (2013) Histone deacetylase inhibitors and pancreatic cancer: are there any promising clinical trials? World J Gastroenterol 19(8):1173–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muller S, Kramer OH (2010) Inhibitors of HDACs—effective drugs against cancer? Curr Cancer Drug Targets 10(2):210–228

    Article  CAS  PubMed  Google Scholar 

  15. Huang L (2006) Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 209(3):611–616

    Article  CAS  PubMed  Google Scholar 

  16. Carew JS, Giles FJ, Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269(1):7–17

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe M, Adachi S, Matsubara H, Imai T, Yui Y, Mizushima Y, Hiraumi Y, Watanabe K, Kamitsuji Y, Toyokuni SY, Hosoi H, Sugimoto T, Toguchida J, Nakahata T (2009) Induction of autophagy in malignant rhabdoid tumor cells by the histone deacetylase inhibitor FK228 through AIF translocation. Int J Cancer 124(1):55–67

    Article  CAS  PubMed  Google Scholar 

  18. Zhu L, Wu K, Ma S, Zhang S (2015) HDAC inhibitors: a new radiosensitizer for non-small-cell lung cancer. Tumori 101:257–262

    Article  PubMed  Google Scholar 

  19. Eigl BJ, North S, Winquist E, Finch D, Wood L, Sridhar SS, Powers J, Good J, Sharma M, Squire JA, Bazov J, Jamaspishvili T, Cox ME, Bradbury PA, Eisenhauer EA, Chi KN (2015) A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest New Drugs 33(4):969–976

    Article  CAS  PubMed  Google Scholar 

  20. Ji M, Lee EJ, Kim KB, Kim Y, Sung R, Lee SJ, Kim DS, Park SM (2015) HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep 33(5):2299–2308

    PubMed  Google Scholar 

  21. Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS (2012) HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res 18(17):4691–4701

    Article  CAS  PubMed  Google Scholar 

  22. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  23. Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 20(7):899–905

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was performed in the Institute of Experimental Ophthalmology, Muenster, with the technical assistance of M. Wissing and M. Langkamp-Flock and the support of Dr. M. Wendling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Mertsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mertsch, S., Thanos, S. (2017). Analysis of Histone Deacetylase-Dependent Effects on Cell Migration Using the Stripe Assay. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics