Skip to main content

Generation of Tissue-Specific Mouse Models to Analyze HDAC Functions

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

  • 2203 Accesses

Abstract

Histone deacetylases (HDACs) play crucial roles during mammalian development and for cellular homeostasis. In addition, these enzymes are promising targets for small molecule inhibitors in the treatment of cancer and neurological diseases. Conditional HDAC knock-out mice are excellent tools for defining the functions of individual HDACs in vivo and for identifying the molecular targets of HDAC inhibitors in disease. Here, we describe the generation of tissue-specific HDAC knock-out mice and delineate a strategy for the generation of conditional HDAC knock-in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. doi:10.1038/nrg2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8(1):57–64. doi:10.1016/j.coph.2007.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hagelkruys A, Sawicka A, Rennmayr M, Seiser C (2011) The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol 206:13–37. doi:10.1007/978-3-642-21631-2_2

    Article  CAS  PubMed  Google Scholar 

  4. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868. doi:10.1038/nrd2681

    Article  CAS  PubMed  Google Scholar 

  5. Langley B, Gensert JM, Beal MF, Ratan RR (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4(1):41–50

    Article  CAS  PubMed  Google Scholar 

  6. Reichert N, Choukrallah MA, Matthias P (2012) Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 69(13):2173–2187. doi:10.1007/s00018-012-0921-9

    Article  CAS  PubMed  Google Scholar 

  7. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9(1):45–57

    Article  CAS  PubMed  Google Scholar 

  8. Kelly RD, Cowley SM (2013) The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans 41(3):741–749. doi:10.1042/BST20130010

    Article  CAS  PubMed  Google Scholar 

  9. Moser MA, Hagelkruys A, Seiser C (2014) Transcription and beyond: the role of mammalian class I lysine deacetylases. Chromosoma 123(1-2):67–78. doi:10.1007/s00412-013-0441-x

    Article  CAS  PubMed  Google Scholar 

  10. Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, Vassiliou G, Bradley A, Cowley SM (2013) Histone deacetylase (HDAC) 1 and 2 are essential for normal T cell development and genomic stability in mice. Blood 121(8):1335–1344. doi:10.1182/blood-2012-07-441949

    Article  CAS  PubMed  Google Scholar 

  11. Hagelkruys A, Lagger S, Krahmer J, Leopoldi A, Artaker M, Pusch O, Zezula J, Weissmann S, Xie Y, Schofer C, Schlederer M, Brosch G, Matthias P, Selfridge J, Lassmann H, Knoblich JA, Seiser C (2014) A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development 141(3):604–616. doi:10.1242/dev.100487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winter M, Moser MA, Meunier D, Fischer C, Machat G, Mattes K, Lichtenberger BM, Brunmeir R, Weissmann S, Murko C, Humer C, Meischel T, Brosch G, Matthias P, Sibilia M, Seiser C (2013) Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J 32(24):3176–3191. doi:10.1038/emboj.2013.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Gilquin B, Khochbin S, Matthias P (2006) Two catalytic domains are required for protein deacetylation. J Biol Chem 281(5):2401–2404. doi:10.1074/jbc.C500241200

    Article  CAS  PubMed  Google Scholar 

  14. Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, Seiser C (2015) Essential non-redundant function of the catalytic activity of HDAC2 in mouse development. Mol Cell Biol 36:462–474. doi:10.1128/MCB.00639-15

    Article  PubMed  Google Scholar 

  15. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284. doi:10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Z, Lutz B (2002) Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res 30(17), e90

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. doi:10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542. doi:10.1038/nbt.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonaparte D, Cinelli P, Douni E, Herault Y, Maas M, Pakarinen P, Poutanen M, Lafuente MS, Scavizzi F (2013) FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents: a report of the Federation of European Laboratory Animal Science Associations Working Group. Lab Anim 47(3):134–145. doi:10.1177/0023677212473918

    Article  CAS  PubMed  Google Scholar 

  20. Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, Tusell L, Genesca A, Whitaker DA, Melton DW, Jorcano JL (2004) A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 39(1):52–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly thank Mircea Winter for providing the immunofluorescence and immunoblot figure. This work was supported by the Austrian Science Fund (P25807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Seiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hagelkruys, A., Moser, M.A., Seiser, C. (2017). Generation of Tissue-Specific Mouse Models to Analyze HDAC Functions. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics