Skip to main content

In Vivo Biosensor Based on Prussian Blue for Brain Chemistry Monitoring : Methodological Review and Biological Applications

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

Abstract

The scope of the present chapter is to give a brief outline of how Prussian Blue (PB) may be used in biosensor applications, especially in neuroscience, and how to mitigate its main limitation (its instability at physiological pH). During the last decade, a large number of studies involving PB have appeared exploring different biosensor configurations (carbon paste, screen printing, glassy carbon, etc.) and different oxidoreductase enzymes (e.g., glucose oxidase, lactate oxidase, and glutamate oxidase). Nevertheless, its applications in neuroscience were not described until 2010 by our group. Later, several publications developing glucose and lactate microbiosensors, based on PB-modified carbon fiber electrodes, were reported. In addition, the use of several cationic surfactants such as cetyltrimethylammonium bromide (CTAB), benzethonium chloride (BZT), and cetylpyridinium chloride (CPC), during electrochemical deposition of PB, demonstrated the ability of this hybrid configuration to improve the pH stability and the electrochemical performance of PB films for in-vivo biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D (2014) Nanotechnologies for the study of the central nervous system. Prog Neurobiol 123:18–36. doi:10.1016/j.pneurobio.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  2. Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23(8):420–428. doi:10.1016/j.tibtech.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  3. Dousset V, Brochet B, Deloire MSA, Lagoarde L, Barroso B, Caille J-M, Petry KG (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol 27(5):1000–1005

    CAS  PubMed  Google Scholar 

  4. Llaudet E, Botting NP, Crayston JA, Dale N (2003) A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 18(1):43–52. doi:10.1016/S0956-5663(02)00106-9

    Article  CAS  PubMed  Google Scholar 

  5. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12):2388–2403. doi:10.1016/j.bios.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  6. Bouzier-Sore A-K, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23(11):1298–1306

    Article  CAS  PubMed  Google Scholar 

  7. Hertz L (2004) The astrocyte-neuron lactate shuttle[colon] a challenge of a challenge. J Cereb Blood Flow Metab 24(11):1241–1248

    Article  PubMed  Google Scholar 

  8. Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A 92(10):4616–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen KC (2006) Chapter 1.4 The validity of intracerebral microdialysis. In: Ben HCW, Thomas IFHC (eds) Handbook of behavioral neuroscience, vol 16. Elsevier, Amsterdam, pp 47–70. doi:10.1016/S1569-7339(06)16004-X

    Google Scholar 

  11. Sharp T, Zetterström T (2006) Chapter 1.1 What did we learn from microdialysis? In: Ben HCW, Thomas IFHC (eds) Handbook of behavioral neuroscience, vol 16. Elsevier, Amsterdam, pp 5–16. doi:10.1016/S1569-7339(06)16001-4

    Google Scholar 

  12. Kouvelas D, Singewald N, Kaehler ST, Philippu A (2006) Sinoaortic denervation abolishes blood pressure-induced GABA release in the locus coeruleus of conscious rats. Neurosci Lett 393(2–3):194–199. doi:10.1016/j.neulet.2005.09.063

    Article  CAS  PubMed  Google Scholar 

  13. Prast H, Hornick A, Kraus MM, Philippu A (2015) Origin of endogenous nitric oxide released in the nucleus accumbens under real-time in vivo conditions. Life Sci 134:79–84. doi:10.1016/j.lfs.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  14. Singewald N, Philippu A (1998) Release of neurotransmitters in the locus coeruleus. Prog Neurobiol 56(2):237–267. doi:10.1016/S0301-0082(98)00039-2

    Article  CAS  PubMed  Google Scholar 

  15. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68. doi:10.1016/S0301-0082(00)00044-7

    Article  CAS  PubMed  Google Scholar 

  16. Singewald N, Kouvelas D, Kaehler ST, Sinner C, Philippu A (2000) Peripheral chemoreceptor activation enhances 5-hydroxytryptamine release in the locus coeruleus of conscious rats. Neurosci Lett 289(1):17–20. doi:10.1016/S0304-3940(00)01241-6

    Article  CAS  PubMed  Google Scholar 

  17. O’Neill RD, Rocchitta G, McMahon CP, Serra PA, Lowry JP (2008) Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo. Trends Analyt Chem 27(1):78–88. doi:10.1016/j.trac.2007.11.008

    Article  Google Scholar 

  18. Gramsbergen JB, Skjøth-Rasmussen J, Rasmussen C, Lambertsen KL (2004) On-line monitoring of striatum glucose and lactate in the endothelin-1 rat model of transient focal cerebral ischemia using microdialysis and flow-injection analysis with biosensors. J Neurosci Methods 140(1–2):93–101. doi:10.1016/j.jneumeth.2004.03.027

    Article  CAS  PubMed  Google Scholar 

  19. Yao T, Okano G (2008) Simultaneous determination of L-glutamate, acetylcholine and dopamine in rat brain by a flow-injection biosensor system with microdialysis sampling. Anal Sci 24(11):1469–1473. doi:10.2116/analsci.24.1469

    Article  CAS  PubMed  Google Scholar 

  20. Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25(3):402–413

    Article  CAS  PubMed  Google Scholar 

  21. O’Neill RD, Gonzalez-Mora J-L, Boutelle MG, Ormonde DE, Lowry JP, Duff A, Fumero B, Fillenz M, Mas M (1991) Anomalously high concentrations of brain extracellular uric acid detected with chronically implanted probes: implications for in vivo sampling techniques. J Neurochem 57(1):22–29. doi:10.1111/j.1471-4159.1991.tb02094.x

    Article  PubMed  Google Scholar 

  22. Roche R, Salazar P, Martín M, Marcano F, González-Mora JL (2011) Simultaneous measurements of glucose, oxyhemoglobin and deoxyhemoglobin in exposed rat cortex. J Neurosci Methods 202(2):192–198. doi:10.1016/j.jneumeth.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Salazar P, Martín M, O’Neill RD, Roche R, González-Mora JL (2012) Improvement and characterization of surfactant-modified Prussian blue screen-printed carbon electrodes for selective H2O2 detection at low applied potentials. J Electroanal Chem 674:48–56. doi:10.1016/j.jelechem.2012.04.005

    Article  CAS  Google Scholar 

  24. Salazar P, Martín M, O’Neill RD, Roche R, González-Mora JL (2012) Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloid Surface B Biointerfaces 92:180–189. doi:10.1016/j.colsurfb.2011.11.047

    Article  CAS  PubMed  Google Scholar 

  25. Salazar P, Martín M, Roche R, González–Mora JL JL, O’Neill RD (2010) Microbiosensors for glucose based on Prussian Blue modified carbon fiber electrodes for in vivo monitoring in the central nervous system. Biosens Bioelectron 26(2):748–753. doi:10.1016/j.bios.2010.06.045

    Article  CAS  PubMed  Google Scholar 

  26. Salazar P, Martín M, Roche R, O’Neill RD, González-Mora JL (2010) Prussian Blue-modified microelectrodes for selective transduction in enzyme-based amperometric microbiosensors for in vivo neurochemical monitoring. Electrochim Acta 55(22):6476–6484. doi:10.1016/j.electacta.2010.06.036

    Article  CAS  Google Scholar 

  27. Salazar P, O’Neill RD, Martín M, Roche R, González-Mora JL (2011) Amperometric glucose microbiosensor based on a Prussian Blue modified carbon fiber electrode for physiological applications. Sens Actuators B Chem 152(2):137–143. doi:10.1016/j.snb.2010.11.056

    Article  CAS  Google Scholar 

  28. Oldenziel WH, Dijkstra G, Cremers TIFH, Westerink BHC (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118(1):34–42. doi:10.1016/j.brainres.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  29. Oldenziel WH, van der Zeyden M, Dijkstra G, Ghijsen WEJM, Karst H, Cremers TIFH, Westerink BHC (2007) Monitoring extracellular glutamate in hippocampal slices with a microsensor. J Neurosci Methods 160(1):37–44. doi:10.1016/j.jneumeth.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  30. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214(5092):986–988

    Article  CAS  PubMed  Google Scholar 

  31. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. doi:10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  PubMed  Google Scholar 

  32. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue - a new neurophysiological measurement. Brain Res 55(1):209–213. doi:10.1016/0006-8993(73)90503-9

    Article  CAS  PubMed  Google Scholar 

  33. Adams RN (1976) Probing brain chemistry with electroanalytical techniques. Anal Chem 48(14):1126A–1138A. doi:10.1021/ac50008a001

    Article  CAS  PubMed  Google Scholar 

  34. Wightman RM, Strope E, Plotsky PM, Adams RN (1976) Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. Nature 262(5564):145–146

    Article  CAS  PubMed  Google Scholar 

  35. Ponchon JL, Cespuglio R, Gonon F, Jouvet M, Pujol JF (1979) Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal Chem 51(9):1483–1486. doi:10.1021/ac50045a030

    Article  CAS  PubMed  Google Scholar 

  36. Wightman RM, Amatorh C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25(2):513–523. doi:10.1016/0306-4522(88)90255-2

    Article  CAS  PubMed  Google Scholar 

  37. Mas M, Fumero B, González-Mora J (1995) Voltammetric and microdialysis monitoring of brain monoamine neurotransmitter release during sociosexual interactions. Behav Brain Res 71(1–2):69–IN65. doi:10.1016/0166-4328(95)00043-7

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Mora JL, Sanchez-Bruno JA, Mas M (1988) Concurrent on-line analysis of striatal ascorbate, dopamine and dihydroxyphenylacetic acid concentrations by in vivo voltammetry. Neurosci Lett 86(1):61–66. doi:10.1016/0304-3940(88)90183-8

    Article  CAS  PubMed  Google Scholar 

  39. O’Neill RD, Fillenz M, Albery WJ, Goddard NJ (1983) The monitoring of ascorbate and monoamine transmitter metabolites in the striatum of unanaesthetised rats using microprocessor-based voltammetry. Neuroscience 9(1):87–93. doi:10.1016/0306-4522(83)90048-9

    Article  PubMed  Google Scholar 

  40. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification1. Biosens Bioelectron 16(1–2):121–131. doi:10.1016/S0956-5663(01)00115-4

    Article  PubMed  Google Scholar 

  41. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825. doi:10.1021/cr068123a

    Article  CAS  PubMed  Google Scholar 

  42. Martín M, O’Neill RD, González-Mora JL, Salazar P (2014) The use of fluorocarbons to mitigate the oxygen dependence of glucose microbiosensors for neuroscience applications. J Electrochem Soc 161(10):H689–H695. doi:10.1149/2.1071410jes

    Article  Google Scholar 

  43. Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta 64(3):439–455. doi:10.1016/S0003-2670(01)82476-4

    Article  CAS  PubMed  Google Scholar 

  44. Hall SB, Khudaish EA, Hart AL (1998) Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochim Acta 43(5–6):579–588. doi:10.1016/S0013-4686(97)00125-4

    Article  CAS  Google Scholar 

  45. Rothwell SA, Kinsella ME, Zain ZM, Serra PA, Rocchitta G, Lowry JP, O’Neill RD (2009) Contributions by a novel edge effect to the permselectivity of an electrosynthesized polymer for microbiosensor applications. Anal Chem 81(10):3911–3918. doi:10.1021/ac900162c

    Article  CAS  PubMed  Google Scholar 

  46. Kuras A, Gutmanien N (2000) Technique for producing a carbon-fibre microelectrode with the fine recording tip. J Neurosci Methods 96(2):143–146. doi:10.1016/S0165-0270(99)00191-0

    Article  CAS  PubMed  Google Scholar 

  47. O’Connell PJ, O’Sullivan CK, Guilbault GG (1998) Electrochemical metallisation of carbon electrodes. Anal Chim Acta 373(2–3):261–270. doi:10.1016/S0003-2670(98)00414-0

    Article  Google Scholar 

  48. Domínguez-Domínguez S, Arias-Pardilla J, Berenguer-Murcia Á, Morallón E, Cazorla-Amorós D (2008) Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38(2):259–268. doi:10.1007/s10800-007-9435-9

    Article  Google Scholar 

  49. Salazar P, Martín M, O’Neill R, Lorenzo-Luis P, Roche R, González-Mora J (2014) Prussian blue and analogues: biosensing applications in health care. In: Advanced biomaterials and biodevices. John Wiley & Sons Inc., New York, NY, pp 423–450. doi:10.1002/9781118774052.ch12

    Google Scholar 

  50. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334(1–2):41–69. doi:10.1016/S0009-8981(03)00241-9

    Article  PubMed  Google Scholar 

  51. D’Orazio P (2011) Biosensors in clinical chemistry — 2011 update. Clin Chim Acta 412(19–20):1749–1761. doi:10.1016/j.cca.2011.06.025

    Article  PubMed  Google Scholar 

  52. Calia G, Monti P, Marceddu S, Dettori MA, Fabbri D, Jaoua S, O’Neill RD, Serra PA, Delogu G, Migheli Q (2015) Electropolymerized phenol derivatives as permselective polymers for biosensor applications. Analyst 140(10):3607–3615. doi:10.1039/C5AN00363F

    Article  CAS  PubMed  Google Scholar 

  53. Rothwell SA, O’Neill RD (2011) Effects of applied potential on the mass of non-conducting poly(ortho-phenylenediamine) electro-deposited on EQCM electrodes: comparison with biosensor selectivity parameters. Phys Chem Chem Phys 13(12):5413–5421. doi:10.1039/C0CP02341H

    Article  CAS  PubMed  Google Scholar 

  54. Rothwell SA, McMahon CP, O’Neill RD (2010) Effects of polymerization potential on the permselectivity of poly(o-phenylenediamine) coatings deposited on Pt–Ir electrodes for biosensor applications. Electrochim Acta 55(3):1051–1060. doi:10.1016/j.electacta.2009.09.069

    Article  CAS  Google Scholar 

  55. Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csöregi E (2004) Biosensors for life quality: design, development and applications. Sens Actuators B Chem 102(2):179–194. doi:10.1016/j.snb.2004.04.084

    Article  CAS  Google Scholar 

  56. Mitala JJ Jr, Michael AC (2006) Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal Chim Acta 556(2):326–332. doi:10.1016/j.aca.2005.09.053

    Article  CAS  Google Scholar 

  57. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi:10.1016/j.bios.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  58. Karyakin AA, Karyakina EE, Gorton L (1996) Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta 43(9):1597–1606. doi:10.1016/0039-9140(96)01909-1

    Article  CAS  PubMed  Google Scholar 

  59. Moscone D, D’Ottavi D, Compagnone D, Palleschi G, Amine A (2001) Construction and analytical characterization of Prussian Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal Chem 73(11):2529–2535. doi:10.1021/ac001245x

    Article  CAS  PubMed  Google Scholar 

  60. Salazar P, Martín M, O’Neill RD, Roche R, González-Mora JL (2012) Biosensors based on Prussian Blue modified carbon fibers electrodes for monitoring lactate in the extracellular space of brain tissue. Int J Electrochem Sci 7:5910–5926

    CAS  Google Scholar 

  61. Kraft A (2008) On the discovery and history of Prussian blue. Bull Hist Chem 33(2):61–67

    CAS  Google Scholar 

  62. Liu X, Chen G-R, Lee D-J, Kawamoto T, Tanaka H, Chen M-L, Luo Y-K (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149. doi:10.1016/j.biortech.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  63. Karyakin AA (2001) Prussian Blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13(10):813–819. doi:10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  64. Keggin JF, Miles FD (1936) Structures and formulæ of the Prussian Blues and related compounds. Nature 137:577–578

    Article  CAS  Google Scholar 

  65. Ludi A, Güdel H (1973) Structural chemistry of polynuclear transition metal cyanides. In: Inorganic chemistry, vol 14, Structure and bonding. Springer, Berlin, pp 1–21. doi:10.1007/BFb0016869

    Chapter  Google Scholar 

  66. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian Blue. J Electrochem Soc 125(6):886–887. doi:10.1149/1.2131575

    Article  CAS  Google Scholar 

  67. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19(6):162–168. doi:10.1021/ar00126a001

    Article  CAS  Google Scholar 

  68. Itaya K, Akahoshi H, Toshima S (1982) Electrochemistry of Prussian Blue modified electrodes: an electrochemical preparation method. J Electrochem Soc 129(7):1498–1500. doi:10.1149/1.2124191

    Article  CAS  Google Scholar 

  69. Garjonyte R, Malinauskas A (1999) Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer. Sens Actuators B Chem 56(1–2):85–92. doi:10.1016/S0925-4005(99)00163-X

    Article  CAS  Google Scholar 

  70. Garjonyte R, Malinauskas A (2000) Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode. Sens Actuators B Chem 63(1–2):122–128. doi:10.1016/S0925-4005(00)00317-8

    Article  CAS  Google Scholar 

  71. Karyakin AA, Karyakina EE, Gorton L (1998) The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. J Electroanal Chem 456(1):97–104. doi:10.1016/S0022-0728(98)00202-2

    Article  CAS  Google Scholar 

  72. Karyakin A (2008) CHAPTER 13 - Chemical and biological sensors based on electroactive inorganic polycrystals. In: Wang XZJ (ed) Electrochemical sensors, biosensors and their biomedical applications. Academic, San Diego, CA, pp 411–439. doi:10.1016/B978-012373738-0.50015-5

    Chapter  Google Scholar 

  73. Gouda MD, Thakur MS, Karanth NG (2001) Stability studies on immobilized glucose oxidase using an amperometric biosensor – effect of protein based stabilizing agents. Electroanalysis 13(10):849–855. doi:10.1002/1521-4109(200106)13:10<849::AID-ELAN849>3.0.CO;2-#

    Article  CAS  Google Scholar 

  74. Breccia JD, Andersson MM, Hatti-Kaul R (2002) The role of poly(ethyleneimine) in stabilization against metal-catalyzed oxidation of proteins: a case study with lactate dehydrogenase. Biochim Biophys Acta 1570(3):165–173. doi:10.1016/S0304-4165(02)00193-9

    Article  CAS  PubMed  Google Scholar 

  75. Mazzaferro L, Breccia JD, Andersson MM, Hitzmann B, Hatti-Kaul R (2010) Polyethyleneimine–protein interactions and implications on protein stability. Int J Biol Macromol 47(1):15–20. doi:10.1016/j.ijbiomac.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  76. Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76(2):292–297. doi:10.1021/ac035048k

    Article  CAS  PubMed  Google Scholar 

  77. Berezhetskyy AL, Sosovska OF, Durrieu C, Chovelon JM, Dzyadevych SV, Tran-Minh C (2008) Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. IRBM 29(2–3):136–140. doi:10.1016/j.rbmret.2007.12.007

    Article  Google Scholar 

  78. Watson GP (1982) The rat brain in stereotaxic coordinates. Academic, New York, NY. doi:10.1016/B978-0-12-547620-1.50001-1

    Google Scholar 

  79. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) A high-sensitive glucose amperometric biosensor based on Prussian Blue modified electrodes. Anal Lett 27(15):2861–2869. doi:10.1080/00032719408000297

    Article  CAS  Google Scholar 

  80. Karyakin AA, Gitelmacher OV, Karyakina EE (1995) Prussian Blue-based first-generation biosensor. a sensitive amperometric electrode for glucose. Anal Chem 67(14):2419–2423. doi:10.1021/ac00110a016

    Article  CAS  Google Scholar 

  81. Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric biosensor for glutamate using Prussian Blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem 72(7):1720–1723. doi:10.1021/ac990801o

    Article  CAS  PubMed  Google Scholar 

  82. Lukachova LV, Kotel’nikova EA, D’Ottavi D, Shkerin EA, Karyakina EE, Moscone D, Palleschi G, Curulli A, Karyakin AA (2003) Nonconducting polymers on Prussian Blue modified electrodes: improvement of selectivity and stability of the advanced H2O2 transducer. IEEE Sens J 3(3):326–332. doi:10.1109/JSEN.2003.814646

    Article  CAS  Google Scholar 

  83. Deng Q, Li B, Dong S (1998) Self-gelatinizable copolymer immobilized glucose biosensor based on Prussian Blue modified graphite electrode. Analyst 123(10):1995–1999. doi:10.1039/A803309I

    Article  CAS  PubMed  Google Scholar 

  84. Li J, Peng T, Peng Y (2003) A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a Prussian Blue modified electrode. Electroanalysis 15(12):1031–1037. doi:10.1002/elan.200390124

    Article  CAS  Google Scholar 

  85. Garjonyte R, Yigzaw Y, Meskys R, Malinauskas A, Gorton L (2001) Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid. Sens Actuators B Chem 79(1):33–38. doi:10.1016/S0925-4005(01)00845-0

    Article  CAS  Google Scholar 

  86. Lowinsohn D, Bertotti M (2007) Flow injection analysis of blood l-lactate by using a Prussian Blue-based biosensor as amperometric detector. Anal Biochem 365(2):260–265. doi:10.1016/j.ab.2007.03.015

    Article  CAS  PubMed  Google Scholar 

  87. Piermarini S, Volpe G, Federico R, Moscone D, Palleschi G (2010) Detection of biogenic amines in human saliva using a screen-printed biosensor. Anal Lett 43(7-8):1310–1316. doi:10.1080/00032710903518724

    Article  CAS  Google Scholar 

  88. Pan D, Chen J, Nie L, Tao W, Yao S (2004) Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at Prussian blue-modified platinum electrode. Electrochim Acta 49(5):795–801. doi:10.1016/j.electacta.2003.09.033

    Article  CAS  Google Scholar 

  89. Uemura T, Kitagawa S (2003) Prussian Blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc 125(26):7814–7815. doi:10.1021/ja0356582

    Article  CAS  PubMed  Google Scholar 

  90. Lin MS, Shih WC (1999) Chromium hexacyanoferrate based glucose biosensor. Anal Chim Acta 381(2–3):183–189. doi:10.1016/S0003-2670(98)00745-4

    Article  CAS  Google Scholar 

  91. Senthil Kumar SM, Chandrasekara Pillai K (2006) Cetyltrimethylammonium bromide surfactant-assisted morphological and electrochemical changes in electrochemically prepared nanoclustered iron(III) hexacyanoferrate. J Electroanal Chem 589(1):167–175. doi:10.1016/j.jelechem.2006.01.017

    Article  Google Scholar 

  92. Senthil Kumar SM, Chandrasekara Pillai K (2006) Compositional changes in unusually stabilized Prussian blue by CTAB surfactant: application to electrocatalytic reduction of H2O2. Electrochem Commun 8(4):621–626. doi:10.1016/j.elecom.2006.02.009

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the grant INNPACTO-MINECO (IPT-2012-0961-300000), Ministerio de Ciencia e Innovación (TIN2011-28146), project RECUPERA 2020 from MINECO and the “Fondo social Europeo”, project MAT2013-40852-R and MAT2013-42900-P from MINECO and TEP 8067 and FQM 6900 from the Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Salazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Salazar, P., Martín, M., O’Neill, R.D., González-Mora, J.L. (2017). In Vivo Biosensor Based on Prussian Blue for Brain Chemistry Monitoring : Methodological Review and Biological Applications. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics