Skip to main content

Optogenetic Manipulations of Neuronal Network Oscillations: Combination of Optogenetics and Electrophysiological Recordings in Behaving Mice

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

Abstract

Neuronal network oscillations support interaction within and between brain regions and are implicated in cognitive functions including perception, memory, and spatial navigation. Recent developments of optogenetics and in vivo elecrophysiology made possible a high-precision control of network oscillations. Here, we describe an experimental approach established in our laboratory to optogenetically manipulate hippocampal theta (5–10 Hz) oscillations in behaving mice and thus to causally address their role in behavior. We provide detailed description of this preparation, describe its advantages and limitations and discuss further possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2(8):539–550. doi:10.1038/35086012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203. doi:10.1146/annurev-neuro-062111-150444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cannon J, McCarthy MM, Lee S, Lee J, Borgers C, Whittington MA, Kopell N (2014) Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci 39(5):705–719. doi:10.1111/ejn.12453

    Article  PubMed  Google Scholar 

  4. Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224. doi:10.1146/annurev.neuro.051508.135603

    Article  CAS  PubMed  Google Scholar 

  5. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667. doi:10.1038/nature08002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462(7271):353–357, nature08573

    Article  CAS  PubMed  Google Scholar 

  7. Csicsvari J, Jamieson B, Wise KD, Buzsaki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37(2):311–322

    Article  CAS  PubMed  Google Scholar 

  8. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A 86(5):1698–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77(6):1002–1016, S0896-6273(13)00231-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsaki G (2008) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60(4):683–697, S0896-6273(08)00762-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Hirschmann J, Elben S, Hartmann CJ, Vesper J, Wojtecki L, Schnitzler A (2014) High-frequency oscillations in Parkinson’s disease: spatial distribution and clinical relevance. Mov Disord 29(10):1265–1272. doi:10.1002/mds.25962

    Article  PubMed  Google Scholar 

  12. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364. doi:10.1016/j.tins.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  13. Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsaki G (1999) High-frequency oscillations in human brain. Hippocampus 9(2):137–142

    Article  CAS  PubMed  Google Scholar 

  14. Gulyas AI, Miles R, Sik A, Toth K, Tamamaki N, Freund TF (1993) Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366(6456):683–687

    Article  CAS  PubMed  Google Scholar 

  15. Buhl EH, Han ZS, Lorinczi Z, Stezhka VV, Karnup SV, Somogyi P (1994) Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol 71(4):1289–1307

    CAS  PubMed  Google Scholar 

  16. Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68(3):557–569, S0896-6273(10)00759-2

    Article  CAS  PubMed  Google Scholar 

  17. Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bahner F, Both M, Tort AB, Kopell NJ, Wisden W, Monyer H (2009) Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 106(9):3561–3566, 0813176106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsaki G (2003) Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci 23(3):1013–1018

    CAS  PubMed  Google Scholar 

  19. Racz A, Ponomarenko AA, Fuchs EC, Monyer H (2009) Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells. J Neurosci 29(8):2563–2568, 29/8/2563

    Article  CAS  PubMed  Google Scholar 

  20. Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15(1 Pt 2):604–622

    CAS  PubMed  Google Scholar 

  21. Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336(6195):170–173

    Article  CAS  PubMed  Google Scholar 

  22. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685

    Article  CAS  PubMed  Google Scholar 

  23. Pita-Almenar JD, Yu D, Lu HC, Beierlein M (2014) Mechanisms underlying desynchronization of cholinergic-evoked thalamic network activity. J Neurosci 34(43):14463–14474. doi:10.1523/JNEUROSCI.2321-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crandall SR, Cruikshank SJ, Connors BW (2015) A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86(3):768–782. doi:10.1016/j.neuron.2015.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartho P, Slezia A, Matyas F, Faradzs-Zade L, Ulbert I, Harris KD, Acsady L (2014) Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82(6):1367–1379. doi:10.1016/j.neuron.2014.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, De Pietri Tonelli D, Fellin T (2013) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16(2):227–234. doi:10.1038/nn.3306

    Article  CAS  PubMed  Google Scholar 

  27. Giocomo LM, Hussaini SA, Zheng F, Kandel ER, Moser MB, Moser EI (2011) Grid cells use HCN1 channels for spatial scaling. Cell 147(5):1159–1170. doi:10.1016/j.cell.2011.08.051

    Article  CAS  PubMed  Google Scholar 

  28. Vertes RP, Hoover WB, Viana Di Prisco G (2004) Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev 3(3):173–200. doi:10.1177/1534582304273594

    Article  PubMed  Google Scholar 

  29. Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16(2):130–138. doi:10.1038/nn.3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grass K, Prast H, Philippu A (1995) Ultradian rhythm in the delta and theta frequency bands of the EEG in the posterior hypothalamus of the rat. Neurosci Lett 191(3):161–164

    Article  CAS  PubMed  Google Scholar 

  31. Prast H, Grass K, Philippu A (1997) The ultradian EEG rhythm coincides temporally with the ultradian rhythm of histamine release in the posterior hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 356(4):526–528

    Article  CAS  PubMed  Google Scholar 

  32. Grass K, Prast H, Philippu A (1998) Influence of catecholamine receptor agonists and antagonists on the ultradian rhythm of the EEG in the posterior hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 357(2):169–175

    Article  CAS  PubMed  Google Scholar 

  33. Grass K, Prast H, Philippu A (1996) Influence of mediobasal hypothalamic lesion and catecholamine receptor antagonists on ultradian rhythm of EEG in the posterior hypothalamus of the rat. Neurosci Lett 207(2):93–96

    Article  CAS  PubMed  Google Scholar 

  34. Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann DM (2012) Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling. Nat Neurosci 15(5):763–768. doi:10.1038/nn.3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mattis J, Brill J, Evans S, Lerner TN, Davidson TJ, Hyun M, Ramakrishnan C, Deisseroth K, Huguenard JR (2014) Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. J Neurosci 34(35):11769–11780. doi:10.1523/JNEUROSCI.5188-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schlingloff D, Kali S, Freund TF, Hajos N, Gulyas AI (2014) Mechanisms of sharp wave initiation and ripple generation. J Neurosci 34(34):11385–11398. doi:10.1523/JNEUROSCI.0867-14.2014

    Article  PubMed  Google Scholar 

  37. Craig MT, McBain CJ (2015) Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. J Neurosci 35(8):3616–3624. doi:10.1523/JNEUROSCI.4166-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vandecasteele M, Varga V, Berenyi A, Papp E, Bartho P, Venance L, Freund TF, Buzsaki G (2014) Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A 111(37):13535–13540. doi:10.1073/pnas.1411233111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G (2013) Inhibition-induced theta resonance in cortical circuits. Neuron 80(5):1263–1276. doi:10.1016/j.neuron.2013.09.033

    Article  CAS  PubMed  Google Scholar 

  40. Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsaki G (2014) Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83(2):467–480. doi:10.1016/j.neuron.2014.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pastoll H, Solanka L, van Rossum MC, Nolan MF (2013) Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77(1):141–154. doi:10.1016/j.neuron.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  42. Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 112(11):3535–3540. doi:10.1073/pnas.1413625112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702. doi:10.1038/nature07991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lepousez G, Lledo PM (2013) Odor discrimination requires proper olfactory fast oscillations in awake mice. Neuron 80(4):1010–1024. doi:10.1016/j.neuron.2013.07.025

    Article  CAS  PubMed  Google Scholar 

  45. Siegle JH, Pritchett DL, Moore CI (2014) Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat Neurosci 17(10):1371–1379. doi:10.1038/nn.3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamamoto J, Suh J, Takeuchi D, Tonegawa S (2014) Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157(4):845–857. doi:10.1016/j.cell.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  47. Kim A, Latchoumane C, Lee S, Kim GB, Cheong E, Augustine GJ, Shin HS (2012) Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc Natl Acad Sci U S A 109(50):20673–20678. doi:10.1073/pnas.1217897109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70. doi:10.1038/nn.3269

    Article  CAS  PubMed  Google Scholar 

  49. Bender F, Gorbati M, Cadavieco MC, Denisova N, Gao X, Holman C, Korotkova T, Ponomarenko A (2015) Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nat Commun 6:8521. doi:10.1038/ncomms9521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duan AR, Varela C, Zhang Y, Shen Y, Xiong L, Wilson MA, Lisman J (2015) Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 77(12):1098–1107. doi:10.1016/j.biopsych.2015.01.020

    Article  PubMed  PubMed Central  Google Scholar 

  51. Unal G, Joshi A, Viney TJ, Kis V, Somogyi P (2015) Synaptic targets of medial septal projections in the hippocampus and extrahippocampal cortices of the mouse. J Neurosci 35(48):15812–15826. doi:10.1523/JNEUROSCI.2639-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287(2):139–171

    Article  CAS  PubMed  Google Scholar 

  53. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456, nprot.2009.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 5(2):247–254, nprot.2009.228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. doi:10.1016/j.neuron.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  56. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266. doi:10.1038/nrn3171

    Article  CAS  PubMed  Google Scholar 

  57. Hangya B, Borhegyi Z, Szilagyi N, Freund TF, Varga V (2009) GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J Neurosci 29(25):8094–8102. doi:10.1523/JNEUROSCI.5665-08.2009

    Article  CAS  PubMed  Google Scholar 

  58. Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2016) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19:290. doi:10.1038/nn.4209

    Article  CAS  PubMed  Google Scholar 

  59. Lubenov EV, Siapas AG (2009) Hippocampal theta oscillations are travelling waves. Nature 459(7246):534–539. doi:10.1038/nature08010

    Article  CAS  PubMed  Google Scholar 

  60. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172. doi:10.1038/nmeth.1808

    Article  CAS  Google Scholar 

  61. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12(2):229–234. doi:10.1038/nn.2247

    Article  CAS  PubMed  Google Scholar 

  62. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2011) Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69(3):445–452. doi:10.1016/j.neuron.2010.12.038

    Article  CAS  PubMed  Google Scholar 

  63. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, Kempadoo KA, Zhang F, Deisseroth K, Bonci A (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475(7356):377–380. doi:10.1038/nature10194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim SY, Adhikari A, Lee SY, Marshel JH, Kim CK, Mallory CS, Lo M, Pak S, Mattis J, Lim BK, Malenka RC, Warden MR, Neve R, Tye KM, Deisseroth K (2013) Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496(7444):219–223. doi:10.1038/nature12018

    Article  CAS  PubMed  Google Scholar 

  65. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390. doi:10.1126/science.1188472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bass CE, Grinevich VP, Kulikova AD, Bonin KD, Budygin EA (2013) Terminal effects of optogenetic stimulation on dopamine dynamics in rat striatum. J Neurosci Methods 214(2):149–155. doi:10.1016/j.jneumeth.2013.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsaki G (2012) Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15(5):769–775, nn.3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu F, Stark E, Ku PC, Wise KD, Buzsaki G, Yoon E (2015) Monolithically integrated muLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88(6):1136–1148. doi:10.1016/j.neuron.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  69. Ung K, Arenkiel BR (2012) Fiber-optic implantation for chronic optogenetic stimulation of brain tissue. J Vis Exp (68):e50004. doi: 10.3791/50004

  70. Vandecasteele M, M S, Royer S, Belluscio M, Berenyi A, Diba K, Fujisawa S, Grosmark A, Mao D, Mizuseki K, Patel J, Stark E, Sullivan D, Watson B, Buzsaki G (2012) Large-scale recording of neurons by movable silicon probes in behaving rodents. J Vis Exp (61):e3568. doi: 10.3791/3568

  71. Hazan L, Zugaro M, Buzsaki G (2006) Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J Neurosci Methods 155(2):207–216

    Article  PubMed  Google Scholar 

  72. Hasselmo ME, Hay J, Ilyn M, Gorchetchnikov A (2002) Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw 15(4-6):689–707

    Article  PubMed  Google Scholar 

  73. Kaifosh P, Lovett-Barron M, Turi GF, Reardon TR, Losonczy A (2013) Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat Neurosci 16(9):1182–1184. doi:10.1038/nn.3482

    Article  CAS  PubMed  Google Scholar 

  74. Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24(35):7681–7689. doi:10.1523/JNEUROSCI.1958-04.2004

    Article  CAS  PubMed  Google Scholar 

  75. Kramis RC, Routtenberg A (1977) Dissociation of hippocampal EEG from its behavioral correlates by septal and hippocampal electrical stimulation. Brain Res 125(1):37–49

    Article  CAS  PubMed  Google Scholar 

  76. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340

    Article  CAS  PubMed  Google Scholar 

  77. Grosenick L, Marshel JH, Deisseroth K (2015) Closed-loop and activity-guided optogenetic control. Neuron 86(1):106–139. doi:10.1016/j.neuron.2015.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, Tucciarone J, Selimbeyoglu A, Berndt A, Grosenick L, Zalocusky KA, Bernstein H, Swanson H, Perry C, Diester I, Boyce FM, Bass CE, Neve R, Huang ZJ, Deisseroth K (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11(7):763–772. doi:10.1038/nmeth.2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Franziska Bender, Maria Gorbati, Marta Carus, Xiaojie Gao, and Suzanne van der Veldt for their valuable contributions to the results and protocols described here. This work was supported by the Deutsche Forschungsgemeinschaft (DFG; Exc 257 NeuroCure, TK and AP; SPP1665, AP), The Human Frontier Science Program (HFSP; RGY0076/2012, TK), and The German-Israeli Foundation for Scientific Research and Development (GIF; I-1326-421.13/2015, TK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Korotkova or Alexey Ponomarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Korotkova, T., Ponomarenko, A. (2017). Optogenetic Manipulations of Neuronal Network Oscillations: Combination of Optogenetics and Electrophysiological Recordings in Behaving Mice. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics