Skip to main content

The Impact of Cannabinoids on Motor Activity and Neurochemical Correlates

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1090 Accesses

Abstract

Cannabinoids and the endocannabinoid system are implicated in the regulation of various physiological processes, including motivational and reward-related behavior as well as affective and motoric responses. Although the literature is vast, methodological variations in studies can sometimes hinder our understanding of these regulatory effects.

In particular, the impact of cannabinoids on motor activity has to be focused on a variety of factors including drug dose, experimental setting (habituated versus non-habituated animals), and rat phenotype. In addition, the parallel study of the cannabinoid-induced effects on neurochemical correlates such as dopaminergic and glutamatergic indices adds essentially to the understanding of the implication of cannabinoids on physiological procedures. The use of both ex vivo tissue extraction and in vivo microdialysis methods allow for a more robust, comparison-based approach to the study of the cannabinoid-induced neurochemical profile.

In general, our behavioral studies have shown that high doses of cannabinoids impair the expression of novelty-induced behavior, while low doses disrupt behavioral habituation resulting in increases in motor and exploratory activity. Our neurochemical findings have shown that cannabinoid treatment exerts excitatory effects on dopaminergic function, but both excitatory and inhibitory effects on glutamate neurotransmission that are more robust at higher doses. The overactivation, suppression, or dysregulation of these specific neurotransmitters in basal ganglia or corticolimbic structures have been associated with basal ganglia disorders, drug addiction, and related psychoses. Thus, the behavioral and neurochemical effects of cannabinoids in these distinct brain regions are of great importance for furthering our understanding of specific CNS disorders and their pathophysiology, as well as for approaching new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Higuera-Matas A, Ucha M, Ambrosio E (2015) Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev 55:119–146. doi:10.1016/j.neubiorev.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  2. Hurd YL, Michaelides M, Miller ML, Jutras-Aswad D (2014) Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology 76(Pt B):416–424. doi:10.1016/j.neuropharm.2013.07.028

    Article  CAS  PubMed  Google Scholar 

  3. Moore TH, Zammit S, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, Lewis G (2007) Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 370:319–328. doi:10.1016/S0140-6736(07)61162-3

    Article  PubMed  Google Scholar 

  4. Rubino T, Parolaro D (2014) Cannabis abuse in adolescence and the risk of psychosis: a brief review of the preclinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 52:41–44. doi:10.1016/j.pnpbp.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  5. Schneider M (2008) Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol 13:253–263. doi:10.1111/j.1369-1600.2008.00110.x

    Article  PubMed  Google Scholar 

  6. Galanopoulos A, Polissidis A, Georgiadou G, Papadopoulou-Daifoti Z, Nomikos GG, Pitsikas N, Antoniou K (2014) WIN55,212-2 impairs non-associative recognition and spatial memory in rats via CB1 receptor stimulation. Pharmacol Biochem Behav 124:58–66. doi:10.1016/j.pbb.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  7. Polissidis A, Chouliara O, Galanopoulos A, Naxakis G, Papahatjis D, Papadopoulou-Daifoti Z, Antoniou K (2014) Cannabinoids negatively modulate striatal glutamate and dopamine release and behavioural output of acute D-amphetamine. Behav Brain Res 270:261–269. doi:10.1016/j.bbr.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  8. Galanopoulos A, Polissidis A, Papadopoulou-Daifoti Z, Nomikos GG, Antoniou K (2011) Delta(9)-THC and WIN55,212-2 affect brain tissue levels of excitatory amino acids in a phenotype-, compound-, dose-, and region-specific manner. Behav Brain Res 224:65–72. doi:10.1016/j.bbr.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  9. Polissidis A, Galanopoulos A, Naxakis G, Papahatjis D, Papadopoulou-Daifoti Z, Antoniou K (2013) The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int J Neuropsychopharmacol 16:393–403. doi:10.1017/S1461145712000156

    Article  CAS  PubMed  Google Scholar 

  10. Akirav I (2011) The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci 5:34. doi:10.3389/fnbeh.2011.00034

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Polissidis A, Chouliara O, Galanopoulos A, Rentesi G, Dosi M, Hyphantis T, Marselos M, Papadopoulou-Daifoti Z, Nomikos GG, Spyraki C, Tzavara ET, Antoniou K (2010) Individual differences in the effects of cannabinoids on motor activity, dopaminergic activity and DARPP-32 phosphorylation in distinct regions of the brain. Int J Neuropsychopharmacol 13:1175–1191. doi:10.1017/S1461145709991003

    Article  CAS  PubMed  Google Scholar 

  12. Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137. doi:10.1177/1073858406296716, 13/2/127 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Muccioli GG (2010) Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 15:474–483. doi:10.1016/j.drudis.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  14. Iversen L (2003) Cannabis and the brain. Brain 126:1252–1270

    Article  PubMed  Google Scholar 

  15. Panagis G, Vlachou S, Nomikos GG (2008) Behavioral pharmacology of cannabinoids with a focus on preclinical models for studying reinforcing and dependence-producing properties. Curr Drug Abuse Rev 1:350–374

    Article  CAS  PubMed  Google Scholar 

  16. Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154:369–383. doi:10.1038/bjp.2008.130, bjp2008130 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284. doi:10.1016/j.pbb.2005.01.032, S0091-3057(05)00130-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Darmani NA (2001) The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2. Eur J Pharmacol 430:49–58, S0014299901013553 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Giuliani D, Ferrari F, Ottani A (2000) The cannabinoid agonist HU 210 modifies rat behavioural responses to novelty and stress. Pharmacol Res 41:47–53. doi:10.1006/phrs.1999.0560, phrs.1999.0560 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Jarbe TU, Andrzejewski ME, DiPatrizio NV (2002) Interactions between the CB1 receptor agonist Delta 9-THC and the CB1 receptor antagonist SR-141716 in rats: open-field revisited. Pharmacol Biochem Behav 73:911–919, S0091305702009383 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Schramm-Sapyta NL, Cha YM, Chaudhry S, Wilson WA, Swartzwelder HS, Kuhn CM (2007) Differential anxiogenic, aversive, and locomotor effects of THC in adolescent and adult rats. Psychopharmacology (Berl) 191:867–877. doi:10.1007/s00213-006-0676-9

    Article  CAS  Google Scholar 

  22. Davis WM, Borgen LA (1974) Effects of cannabidiol and delta-9-tetrahydrocannabinol on operant behavior. Res Commun Chem Pathol Pharmacol 9:453–462

    CAS  PubMed  Google Scholar 

  23. Drews E, Schneider M, Koch M (2005) Effects of the cannabinoid receptor agonist WIN 55,212-2 on operant behavior and locomotor activity in rats. Pharmacol Biochem Behav 80:145–150. doi:10.1016/j.pbb.2004.10.023, S0091-3057(04)00350-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Rodvelt KR, Bumgarner DM, Putnam WC, Miller DK (2007) WIN-55,212-2 and SR-141716A alter nicotine-induced changes in locomotor activity, but do not alter nicotine-evoked [3H]dopamine release. Life Sci 80:337–344. doi:10.1016/j.lfs.2006.09.020, S0024-3205(06)00738-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Sulcova E, Mechoulam R, Fride E (1998) Biphasic effects of anandamide. Pharmacol Biochem Behav 59:347–352, S0091-3057(97)00422-X [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Antoniou K, Kafetzopoulos E (1996) The pattern of locomotor activity after cocaine treatment in the rat. Behav Pharmacol 7:237–244

    Article  CAS  PubMed  Google Scholar 

  27. Antoniou K, Kafetzopoulos E, Papadopoulou-Daifoti Z, Hyphantis T, Marselos M (1998) D-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats. Neurosci Biobehav Rev 23:189–196

    Article  CAS  PubMed  Google Scholar 

  28. Antoniou K, Papathanasiou G, Panagis G, Nomikos GG, Hyphantis T, Papadopoulou-Daifoti Z (2004) Individual responses to novelty predict qualitative differences in d-amphetamine-induced open field but not reward-related behaviors in rats. Neuroscience 123:613–623, S0306452203007905 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Antoniou K, Papathanasiou G, Papalexi E, Hyphantis T, Nomikos GG, Spyraki C, Papadopoulou-Daifoti Z (2008) Individual responses to novelty are associated with differences in behavioral and neurochemical profiles. Behav Brain Res 187:462–472. doi:10.1016/j.bbr.2007.10.010, S0166-4328(07)00544-X [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Polissidis A, Chouliara O, Galanopoulos A, Marselos M, Papadopoulou-Daifoti Z, Antoniou K (2009) Behavioural and dopaminergic alterations induced by a low dose of WIN 55,212-2 in a conditioned place preference procedure. Life Sci 85:248–254. doi:10.1016/j.lfs.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  31. Pawlak CR, Schwarting RK (2002) Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacol Biochem Behav 73:679–687

    Article  CAS  PubMed  Google Scholar 

  32. Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    Article  CAS  PubMed  Google Scholar 

  33. Thiel CM, Muller CP, Huston JP, Schwarting RK (1999) High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience 93:243–251, S0306-4522(99)00158-X [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Cools AR, Ellenbroek BA, Gingras MA, Engbersen A, Heeren D (1997) Differences in vulnerability and susceptibility to dexamphetamine in Nijmegen high and low responders to novelty: a dose-effect analysis of spatio-temporal programming of behaviour. Psychopharmacology (Berl) 132:181–187

    Article  CAS  Google Scholar 

  35. Piazza PV, Deminiere JM, Maccari S, Mormede P, Le Moal M, Simon H (1990) Individual reactivity to novelty predicts probability of amphetamine self-administration. Behav Pharmacol 1:339–345

    Article  PubMed  Google Scholar 

  36. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462. doi:10.1124/pr.58.3.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Navarro M, Fernandez-Ruiz JJ, de Miguel R, Hernandez ML, Cebeira M, Ramos JA (1993) An acute dose of delta 9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav Brain Res 57:37–46

    Article  CAS  PubMed  Google Scholar 

  38. Navarro M, Fernandez-Ruiz JJ, De Miguel R, Hernandez ML, Cebeira M, Ramos JA (1993) Motor disturbances induced by an acute dose of delta 9-tetrahydrocannabinol: possible involvement of nigrostriatal dopaminergic alterations. Pharmacol Biochem Behav 45:291–298, 0091-3057(93)90241-K [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez De Fonseca F, Fernandez-Ruiz JJ, Murphy LL, Cebeira M, Steger RW, Bartke A, Ramos JA (1992) Acute effects of delta-9-tetrahydrocannabinol on dopaminergic activity in several rat brain areas. Pharmacol Biochem Behav 42:269–275

    Article  CAS  PubMed  Google Scholar 

  40. Chen JP, Paredes W, Li J, Smith D, Lowinson J, Gardner EL (1990) Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology (Berl) 102:156–162

    Article  CAS  Google Scholar 

  41. Chen JP, Paredes W, Lowinson JH, Gardner EL (1991) Strain-specific facilitation of dopamine efflux by delta 9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci Lett 129:136–180

    Article  CAS  PubMed  Google Scholar 

  42. Malone DT, Taylor DA (1999) Modulation by fluoxetine of striatal dopamine release following Delta9-tetrahydrocannabinol: a microdialysis study in conscious rats. Br J Pharmacol 128:21–26. doi:10.1038/sj.bjp.0702753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, Devoto P (2002) Delta(9)-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res 948:155–158, S000689930203055X [pii]

    Article  CAS  PubMed  Google Scholar 

  44. Tanda G, Loddo P, Di Chiara G (1999) Dependence of mesolimbic dopamine transmission on delta9-tetrahydrocannabinol. Eur J Pharmacol 376:23–26, S0014-2999(99)00384-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Drossopoulou G, Antoniou K, Kitraki E, Papathanasiou G, Papalexi E, Dalla C, Papadopoulou-Daifoti Z (2004) Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience 126:849–857. doi:10.1016/j.neuroscience.2004.04.044

    Article  CAS  PubMed  Google Scholar 

  46. Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J (2004) Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci 20:217–228. doi:10.1111/j.1460-9568.2004.03443.x

    Article  CAS  PubMed  Google Scholar 

  47. Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J (2005) Male aromatase-knockout mice exhibit normal levels of activity, anxiety and “depressive-like” symptomatology. Behav Brain Res 163:186–193. doi:10.1016/j.bbr.2005.04.020

    Article  CAS  PubMed  Google Scholar 

  48. Commissiong JW (1985) Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol 34:1127–1131, 0006-2952(85)90484-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Hitzemann R, Curell J, Hom D, Loh H (1982) Effects of naloxone on d-amphetamine- and apomorphine-induced behavior. Neuropharmacology 21:1005–1011

    Article  CAS  PubMed  Google Scholar 

  50. Miura H, Qiao H, Ohta T (2002) Influence of aging and social isolation on changes in brain monoamine turnover and biosynthesis of rats elicited by novelty stress. Synapse 46:116–124. doi:10.1002/syn.10133

    Article  CAS  PubMed  Google Scholar 

  51. Tavares JV, Drevets WC, Sahakian BJ (2003) Cognition in mania and depression. Psychol Med 33:959–967

    Article  Google Scholar 

  52. Cerbone A, Sadile AG (1994) Behavioral habituation to spatial novelty: interference and noninterference studies. Neurosci Biobehav Rev 18:497–518

    Article  CAS  PubMed  Google Scholar 

  53. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  CAS  PubMed  Google Scholar 

  54. Diana M, Melis M, Gessa GL (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 10:2825–2830

    Article  CAS  PubMed  Google Scholar 

  55. Kuepper R, Ceccarini J, Lataster J, van Os J, van Kroonenburgh M, van Gerven JM, Marcelis M, Van Laere K, Henquet C (2013) Delta-9-tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study. PLoS One 8:e70378. doi:10.1371/journal.pone.0070378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research project was co-financed by EU-European Social Fund (75 %) and the Greek Secretariat of Research and Technology—GSRT (25 %) (PENED, O3ED768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Antoniou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Antoniou, K., Polissidis, A., Delis, F., Poulia, N. (2017). The Impact of Cannabinoids on Motor Activity and Neurochemical Correlates. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics