Skip to main content

Involvement of Neurotransmitters in Behavior and Blood Pressure Control

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1069 Accesses

Abstract

Research interest in the field of interactions between brain neurons that utilize different neurotransmitters is growing rapidly. To obtain evidence for this transmitter-mediated cross-talk between neurons, investigation of transmitter release in distinct brain areas under in vivo conditions is particularly useful. The studies described in the present review were carried out using the push–pull superfusion technique, which makes it possible to superfuse distinct brain areas and to determine the release of endogenous neurotransmitters in the superfusate. The brain areas investigated were the posterior hypothalamus, the basolateral nucleus of the amygdala and the locus coeruleus. Using this technique we have found that alterations in the extracellular concentration of serotonin may contribute to the modulation of the activity of locus coeruleus neurons in response to chemosensory stimuli. We have also observed an exaggerated stress response of glutamatergic neurons in the amygdala of spontaneously hypertensive as compared with Wistar-Kyoto rats, which might be of significance for the strain differences in the cardiovascular and behavioral responses to stress. In sinaortic denervated rats, blood pressure lability was greatly enhanced and accompanied by increased basal release of glutamate in the locus coeruleus. Finally, behavioral studies revealed that inescapable electric foot shock enhances significantly the release of several amino acids in the locus coeruleus. Given the success of the push–pull experiments, the same technique can be used in future behavioral studies, in order to investigate the release of neurotransmitters during behavioral and cognitive performance. Similar investigations in bilateral aortic denervated animals are also important in order to define whether the emotional and cognitive disturbances are induced by inhibition of blood pressure stimuli to the brain or by hypertension and increased pressure lability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Brain Res Rev 41:268–287

    Article  CAS  PubMed  Google Scholar 

  2. Chandler DJ (2016) Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations. Brain Res 1641:197

    Article  CAS  PubMed  Google Scholar 

  3. Bhaskaran D, Freed CR (1988) Changes in neurotransmitter turnover in locus coeruleus produced by changes in arterial blood pressure. Brain Res Bull 21:191–199

    Article  CAS  PubMed  Google Scholar 

  4. Singewald N, Kaehler ST, Hemeida R, Philippu A (1998) Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. Br J Pharmacol 123:746–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singewald N, Kouvelas D, Kaehler ST, Sinner C, Philippu A (2000) Peripheral chemoreceptor activation enhances 5-hydroxytryptamine release in the locus coeruleus of conscious rats. Neurosci Lett 289:17–20

    Article  CAS  PubMed  Google Scholar 

  6. Singewald N, Guo L, Philippu A (1993) Release of endogenous GABA in the posterior hypothalamus of the conscious rat; effects of drugs and experimentally induced blood pressure changes. Naunyn Schmiedebergs Arch Pharmacol 347:402–406

    Article  CAS  PubMed  Google Scholar 

  7. Singewald N, Guo LJ, Schneider C, Kaehler S, Philippu A (1995) Serotonin outflow in the hypothalamus of conscious rats: origin and possible involvement in cardiovascular control. Eur J Pharmacol 294:787–793

    Article  CAS  PubMed  Google Scholar 

  8. Singewald N, Schneider C, Philippu A (1994) Disturbances in blood pressure homeostasis modify GABA release in the locus coeruleus. Neuroreport 5:1709–1712

    Article  CAS  PubMed  Google Scholar 

  9. Philippu A (2001) In vivo neurotransmitter release in the locus coeruleus--effects of hyperforin, inescapable shock and fear. Pharmacopsychiatry 34(Suppl 1):S111–S115

    Article  CAS  PubMed  Google Scholar 

  10. Singewald N, Guo LJ, Philippu A (1993) Taurine release in the hypothalamus is altered by blood pressure changes and neuroactive drugs. Eur J Pharmacol 240:21–27

    Article  CAS  PubMed  Google Scholar 

  11. Kimura S, Ohshige Y, Lin L, Okumura T, Yanaihara C, Yanaihara N, Shiotani Y (1994) Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: light and electron microscopic immunocytochemical studies. J Neuroendocrinol 6:503–507

    Article  CAS  PubMed  Google Scholar 

  12. Voisin DL, Chapman C, Poulain DA, Herbison AE (1994) Extracellular GABA concentrations in rat supraoptic nucleus during lactation and following haemodynamic changes: an in vivo microdialysis study. Neuroscience 63:547–558

    Article  CAS  PubMed  Google Scholar 

  13. Philippu A (1988) Regulation of blood pressure by central neurotransmitters and neuropeptides. Rev Physiol Biochem Pharmacol 111:1–115

    CAS  PubMed  Google Scholar 

  14. Wible JH Jr, Luft FC, DiMicco JA (1988) Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system. Am J Physiol 254:R680–R687

    CAS  PubMed  Google Scholar 

  15. Singewald N, Philippu A (1996) Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 17:356–363

    Article  CAS  PubMed  Google Scholar 

  16. Singewald N, Pfitscher A, Philippu A (1992) Effects of gamma-vinyl GABA (Vigabatrin) on blood pressure and body weight of hypertensive and normotensive rats. Naunyn Schmiedebergs Arch Pharmacol 345:181–186

    Article  CAS  PubMed  Google Scholar 

  17. Shonis CA, Peano CA, Dillon GH, Waldrop TG (1993) Cardiovascular responses to blockade of GABA synthesis in the hypothalamus of the spontaneously hypertensive rat. Brain Res Bull 31:493–499

    Article  CAS  PubMed  Google Scholar 

  18. Franchini KG, Krieger EM (1993) Cardiovascular responses of conscious rats to carotid body chemoreceptor stimulation by intravenous KCN. J Auton Nerv Syst 42:63–69

    Article  CAS  PubMed  Google Scholar 

  19. Haibara AS, Colombari E, Chianca DA Jr, Bonagamba LG, Machado BH (1995) NMDA receptors in NTS are involved in bradycardic but not in pressor response of chemoreflex. Am J Physiol 269:1421–1427

    Google Scholar 

  20. Hayward LF, Johnson AK, Felder RB (1999) Arterial chemoreflex in conscious normotensive and hypertensive adult rats. Am J Physiol 276:1215–1222

    Google Scholar 

  21. Vasquez EC, Meyrelles SS, Mauad H, Cabral AM (1997) Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Braz J Med Biol Res 30:521–532

    Article  CAS  PubMed  Google Scholar 

  22. Singewald N, Kouvelas D, Chen F, Philippu A (1997) The release of inhibitory amino acids in the hypothalamus is tonically modified by impulses from aortic baroreceptors as a consequence of blood pressure fluctuations. Naunyn Schmiedebergs Arch Pharmacol 356:348–355

    Article  CAS  PubMed  Google Scholar 

  23. Singewald N, Kouvelas D, Mostafa A, Sinner C, Philippu A (2000) Release of glutamate and GABA in the amygdala of conscious rats by acute stress and baroreceptor activation: differences between SHR and WKY rats. Brain Res 864:138–141

    Article  CAS  PubMed  Google Scholar 

  24. File SE, Zangrossi H Jr, Sanders FL, Mabbutt PS (1994) Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacology (Berl) 113:543–546

    Article  CAS  Google Scholar 

  25. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  26. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus--memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  CAS  PubMed  Google Scholar 

  27. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kouvelas D, Pourzitaki C, Papazisis G, Dagklis T, Dimou K, Kraus MM (2008) Nandrolone abuse decreases anxiety and impairs memory in rats via central androgenic receptors. Int J Neuropsychopharmacol 11:925–934

    Article  CAS  PubMed  Google Scholar 

  29. Koks S, Bourin M, Voikar V, Soosaar A, Vasar E (1999) Role of CCK in anti-exploratory action of paroxetine, 5-HT reuptake inhibitor. Int J Neuropsychopharmacol 2:9–16

    Article  CAS  PubMed  Google Scholar 

  30. Cohen H, Maayan R, Touati-Werner D, Kaplan Z, Matar A, Loewenthal U, Kozlovsky N, Weizman R (2007) Decreased circulatory levels of neuroactive steroids in behaviourally more extremely affected rats subsequent to exposure to a potentially traumatic experience. Int J Neuropsychopharmacol 10:203–209

    Article  CAS  PubMed  Google Scholar 

  31. Holloway WR Jr, Thor DH (1988) Social memory deficits in adult male rats exposed to cadmium in infancy. Neurotoxicol Teratol 10:193–197

    Article  CAS  PubMed  Google Scholar 

  32. Sawyer TF, Hengehold AK, Perez WA (1984) Chemosensory and hormonal mediation of social memory in male rats. Behav Neurosci 98:908–913

    Article  CAS  PubMed  Google Scholar 

  33. Dantzer R, Bluthe RM, Koob GF, Le Moal M (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 91:363–368

    Article  CAS  Google Scholar 

  34. Prediger RD, Takahashi RN (2003) Ethanol improves short-term social memory in rats. Involvement of opioid and muscarinic receptors. Eur J Pharmacol 462:115–123

    Article  CAS  PubMed  Google Scholar 

  35. Engelmann M, Wotjak CT, Landgraf R (1995) Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol Behav 58:315–321

    Article  CAS  PubMed  Google Scholar 

  36. Popik P, van Ree JM (1998) Neurohypophyseal peptides and social recognition in rats. Prog Brain Res 119:415–436

    Article  CAS  PubMed  Google Scholar 

  37. Kaehler ST, Sinner C, Kouvelas D, Philippu A (2000) Effects of inescapable shock and conditioned fear on the release of excitatory and inhibitory amino acids in the locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol 361:193–199

    Article  CAS  PubMed  Google Scholar 

  38. Krieger EM (1964) Neurogenic hypertension in the rat. Circ Res 15:511–521

    Article  CAS  PubMed  Google Scholar 

  39. Nowak SJ (1940) Chronic hypertension produced by carotid sinus and aortic-depressor nerve section. Ann Surg 111:102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kouvelas D, Singewald N, Kaehler ST, Philippu A (2006) Sinoaortic denervation abolishes blood pressure-induced GABA release in the locus coeruleus of conscious rats. Neurosci Lett 393:194–199

    Article  CAS  PubMed  Google Scholar 

  41. Abdel-Rahman AA (1992) Aortic baroreceptors exert a tonically active restraining influence on centrally mediated depressor responses. J Cardiovasc Pharmacol 19:233–245

    Article  CAS  PubMed  Google Scholar 

  42. Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  43. Kouvelas D, Pourzitaki C, Papazisis G, Tsilkos K, Chourdakis M, Kraus MM (2009) Chronic aortic denervation decreases anxiety and impairs social memory in rats. Life Sci 85:602–608

    Article  CAS  PubMed  Google Scholar 

  44. Kouvelas D, Amaniti E, Pourzitaki C, Kapoukranidou D, Thomareis O, Papazisis G, Vasilakos D (2009) Baroreceptors discharge due to bilateral aortic denervation evokes acute neuronal damage in rat brain. Brain Res Bull 79:142–146

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Papazisis M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kouvelas, D., Papazisis, G., Pourzitaki, C., Goulas, A. (2017). Involvement of Neurotransmitters in Behavior and Blood Pressure Control. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics