Skip to main content

Principles of Stereotaxy in Small Animals

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

Abstract

Under the methods of background research to study neuronal communication in the central nervous system (CNS) connected to its vital functions, learning and degenerative processes are techniques that enable in vivo stimulation and determination of neurotransmitters and second messengers in the brain of small animals, mainly rats and mice.

In distinct brain areas, the collection of samples, measurement of signaling molecules, and recording responses to manipulation from and in the brain area of interest can be reached by various techniques. The distinct brain area is reached using brain coordinates that are documented in brain maps of these rodents. For this purpose, the head of an anaesthetized animal is fixed in a stereotaxic frame and either a microdialysis probe or an amperometric sensor, a modified push–pull cannula (PPC), a cannula for intracerebroventricular- (i.c.v.) and micro-injections, or electrodes are inserted stereotactically with skull-flat orientation. A microdrive is used for the exact insertion of the device into the brain tissue or brain ventricle through a hole in the skull. The experiment may be carried out in anesthetized or conscious, freely moving animals. At the end of the experiment the brain is removed from the skull of the sacrificed animal—prior anesthetized if the experiment was carried out on a conscious animal—and kept in order to validate histologically correct localization of the inserted device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly PI (2000) Stereotactic surgery: what is past is prologue. Neurosurgery 46:16–27

    Article  CAS  PubMed  Google Scholar 

  2. Ogura K, Tachibana E, Aoshima C, Sumitomo M (2006) New microsurgical technique for intraparenchymal lesions of the brain: transcylinder approach. Acta Neurochir 148:779–785

    Article  CAS  PubMed  Google Scholar 

  3. Cooley RK, Vanderwolf CH (1990) Stereotaxic surgery in the rat: a photographic series. Kirby Co, London

    Google Scholar 

  4. Zapata A, Chefer VI, Shippenberg TS (2009) Microdialysis in rodents. Curr Protoc Neurosci. doi:10.1002/0471142301.ns0702s47

  5. Pepicelli O, Raiteri M, Fedele E (2004) The NOS/sGC pathway in the rat central nervous systems: a microdialysis overview. Neurochem Int 45:787–797

    Article  CAS  PubMed  Google Scholar 

  6. Philippu A, Prast H, Singewald N (1996) Identification and dynamics of neuronal modulation and function in brain structures and nuclei by continuous determination of transmitter release rates using push-pull superfusion technique: a compelling approach to in vivo brain research. Sci Pharm 64:609–618

    CAS  Google Scholar 

  7. Slaney TR, Mabrouk OS, Porter-Stransky KA, Aragona BJ, Kennedy RT (2013) Chemical gradients within brain extracellular space measured using low flow push pull perfusion sampling in vivo. ACS Chem Neurosci 4:321–329

    Article  CAS  PubMed  Google Scholar 

  8. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue--a new neurophysiological measurement. Brain Res 55:209–213

    Article  CAS  PubMed  Google Scholar 

  9. Fazeli MS, Errington ML, Dolphin AC et al (1988) Long-term potentiation in the dentate gyros of the anaesthetized rat is accompanied by an increase in protein efflux into pushpull cannula perfusates. Brain Res 473:51–59

    Article  CAS  PubMed  Google Scholar 

  10. Prast H, Grass K, Philippu A (1997) The ultradian EEG rhythm coincides temporally with the ultradian rhythm of histamine release in the posterior hypothalamus of the rat. Naunyn-Schmiedebergs Arch Pharmacol 356:526–528

    Article  CAS  PubMed  Google Scholar 

  11. Kraus MM, Prast H (2001) The nitric oxide system modulates the in vivo release of acetylcholine in the nucleus accumbens induced by stimulation of the hippocampal fornix/fimbria-projection. Eur J Neurosci 14:1105–1112

    Article  CAS  PubMed  Google Scholar 

  12. Kraus MM, Prast H, Philippu A (2014) Influence of parafascicular thalamic input on neuronal activity within the nucleus accumbens is mediated by nitric oxide - an in vivo study. Life Sci 102:49–54

    Article  CAS  PubMed  Google Scholar 

  13. Wen P, Li M, Xiao H et al (2015) Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Neurosci Lett 600:62–68

    Article  CAS  PubMed  Google Scholar 

  14. Prast H, Hornick A, Kraus MM, Philippu A (2015) Origin of endogenous nitric oxide released in the nucleus accumbens under real-time in vivo conditions. Life Sci 134:79–84

    Google Scholar 

  15. Myers RD, Adell A, Lankford MF (1998) Simultaneous comparison of cerebral dialysis and pushpull perfusion in the brain of rats: a critical review. Neurosci Biobehav Rev 22:371–387

    Article  CAS  PubMed  Google Scholar 

  16. Ebner K, Rjabokon A, Pape HC, Singewald N (2011) Increased in vivo release of neuropeptide S in the amygdala of free moving rats after local depolarisation and emotional stress. Amino Acids 41:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prast H, Fischer H, Werner E, Philippu A (1995) Nitric oxide modulates the release of acetylcholine in the ventral striatum of the freely moving rat. Naunyn Schmiedebergs Arch Pharmacol 352:67–73

    Article  CAS  PubMed  Google Scholar 

  18. Ma S, Wu J, Feng Y, Chen B (2011) Elevated estrogen receptor expression in hypothalamic preoptic area decreased by electroacupuncture in ovariectomized rats. Neurosci Lett 494:109–113

    Article  CAS  PubMed  Google Scholar 

  19. Schoener EP, Hager PJ, Felt BT, Schneider DR (1979) Cyclic nucleotides in the rat neostriatum: push-pull perfusions studies. Brain Res 179:111–119

    Article  CAS  PubMed  Google Scholar 

  20. Bashkatova V, Kraus MM, Vanin A, Prast H (2004) Comparative effects of NO-synthase inhibitor and NMDA antagonist on generation of nitric oxide and release of amino acids and acetylcholine in the rat brain elicited by amphetamine neurotoxicity. Ann N Y Acad Sci 1025:221–230

    Article  CAS  PubMed  Google Scholar 

  21. Acquas E, Wilson C, Fibiger HC (1996) Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J Neurosci 76:3089–3096

    Google Scholar 

  22. Kaehler ST, Singewald N, Sinner C, Philippu A (2000) Conditioned fear and inescapable shock modify the release of serotonin in the locus coeruleus. Brain Res 859:249–254

    Article  CAS  PubMed  Google Scholar 

  23. Kita JM, Kile BM, Parker LE, Wightman RM (2009) In vivo measurement of somatodentritic release of dopamine in the ventral tegemental area. Synapse 63:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickham RJ, Park J, Nunes EJ Addy NA (2015) Examination of rapid dopamine dynamics with fast scan cyclic voltammetry during intraoral tastant administration in awake rats. J Vis Exp (102)

    Google Scholar 

  25. Hornick A, Lieb A, Vo NP, Stuppner H, Prast H (2011) The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic -and age-impaired memory. Neuroscience 197:280–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bashkatova V, Hornick A, Vanin A et al (2008) Antagonist of M1 muscarinic acetylcholine receptor prevents neurotoxicity induced by amphetamine via nitric oxide pathway. Ann N Y Acad Sci 1139:172–176

    Article  CAS  PubMed  Google Scholar 

  27. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  28. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  29. Waynforth HB, Flecknell PA (1995) Experimental and surgical technique in the rat. Elsevier academic press, Amsterdam

    Google Scholar 

  30. Stokes EL, Flecknell PA, Richardson CA (2009) Reported analgesic and anaesthetic administration to rodents undergoing experimental surgical procedures. Lab Anim 43:149–154

    Article  CAS  PubMed  Google Scholar 

  31. Flecknell PA (2009) Laboratory animal anaesthesia. Elsevier Academic press, Amsterdam

    Google Scholar 

  32. Jeffrey M, Lang M, Gane J, Burnham WM, Zhang L (2013) A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain. BMC Neurosci 14:82

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davenport HA (1960) Histological and histochemical techniques. Saunders, Philadelphia, PA

    Google Scholar 

  34. Humason GL (1972) Animal tissue techniques, 3rd edn. Freeman, San Francisco, CA

    Google Scholar 

  35. Flodmark S, Hamberger A, Hamberger B, Steinwall O (1969) Concurrent registration of EEG responses, catecholamine uptake and trypan blue staining in chemical blood-brain-barrier damage. Acta Neuropathol 12:16–22

    Article  Google Scholar 

Download references

Acknowledgments

Development of PPC and PPC technique were supported by the Deutsche Forschungsgemeinschaft (DFG), Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) and Russia Foundation for Fundamental Research and INTAS grant (No 96-1502) of European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athineos Philippu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hornick, A., Philippu, A. (2017). Principles of Stereotaxy in Small Animals. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics