Skip to main content

Semisynthesis of Membrane-Attached Proteins Using Split Inteins

  • Protocol
  • First Online:
Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

The site-selective installation of lipid modifications on proteins is critically important in our understanding of how membrane association influences the biophysical properties of proteins as well as to study certain proteins in their native environment. Here, we describe the use of split inteins for the C-terminal attachment of lipid-modified peptides to virtually any protein of interest (POI) via protein trans-splicing (PTS). To achieve this, the protein of interest is expressed in fusion with the N-terminal split intein segment and the C-terminal split intein segment is prepared by solid phase peptide synthesis. A synthetic peptide carrying two lipid chains is also made chemically to serve as a membrane anchor and subsequently linked to the C-terminal split intein by native chemical ligation. Proteins of interest for our work are the prion protein as well as small GTPases; however, extensions to other POIs are possible. Detailed information for the C-terminal introduction of a lipidated membrane anchor (MA) peptide using split intein systems from Synechocystis spp. and Nostoc punctiforme for the Prion protein (PrP, as a challenging protein of interest) and the enhanced green-fluorescent protein (eGFP, as an easily trackable target protein) are provided here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Priola SA, McNally KL (2009) The role of the prion protein membrane anchor in prion infection. Prion 3(3):134–138

    Article  PubMed  PubMed Central  Google Scholar 

  2. Caughey B, Raymond GJ (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem 266(27):18217–18223

    CAS  PubMed  Google Scholar 

  3. Puig B, Altmeppen H, Glatzel M (2014) The GPI-anchoring of PrP: implications in sorting and pathogenesis. Prion 8(1):11–18

    Article  CAS  PubMed  Google Scholar 

  4. Bate C, Tayebi M, Williams A (2010) The glycosylphosphatidylinositol anchor is a major determinant of prion binding and replication. Biochem J 428(1):95–101. doi:10.1042/BJ20091469

    Article  CAS  PubMed  Google Scholar 

  5. Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CF (2014) A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 289(43):30144–30160. doi:10.1074/jbc.M114.587345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135. doi:10.1126/science.1183748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A 109(22):8546–8551. doi:10.1073/pnas.1204498109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716):1746–1752

    Article  CAS  PubMed  Google Scholar 

  9. Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471. doi:10.1016/j.cell.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  10. Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K (2003) Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302(5645):646–650. doi:10.1126/science.1087761

    Article  CAS  PubMed  Google Scholar 

  11. Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS (2010) Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nat Chem Biol 6(7):534–540

    Article  CAS  PubMed  Google Scholar 

  12. Schelhaas M, Nagele E, Kuder N, Bader B, Kuhlmann J, Wittinghofer A, Waldmann H (1999) Chemoenzymatic synthesis of biotinylated Ras peptides and their use in membrane binding studies of lipidated model proteins by surface plasmon resonance. Chem Eur J 5(4):1239–1252

    Article  CAS  Google Scholar 

  13. Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H (2006) Lipidated ras and rab peptides and proteins—synthesis, structure, and function. Angew Chem Int Ed Engl 45(40):6622–6646

    Article  CAS  PubMed  Google Scholar 

  14. Grogan MJ, Kaizuka Y, Conrad RM, Groves JT, Bertozzi CR (2005) Synthesis of lipidated green fluorescent protein and its incorporation in supported lipid bilayers. J Am Chem Soc 127(41):14383–14387

    Article  CAS  PubMed  Google Scholar 

  15. Hicks MR, Gill AC, Bath IK, Rullay AK, Sylvester ID, Crout DH, Pinheiro TJT (2006) Synthesis and structural characterization of a mimetic membrane-anchored prion protein. FEBS J 273(6):1285–1299

    Article  CAS  PubMed  Google Scholar 

  16. Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CFW (2007) Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol 14(9):994–1006

    Article  CAS  PubMed  Google Scholar 

  17. Filchtinski D, Bee C, Savopol T, Engelhard M, Becker CF, Herrmann C (2008) Probing ras effector interactions on nanoparticle supported lipid bilayers. Bioconjug Chem 19(9):1938–1944

    Article  CAS  PubMed  Google Scholar 

  18. Hang HC, Linder ME (2011) Exploring protein lipidation with chemical biology. Chem Rev 111(10):6341–6358. doi:10.1021/cr2001977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bader B, Kuhn K, Owen DJ, Waldmann H, Wittinghofer A, Kuhlmann J (2000) Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 403(6766):223–226

    Article  CAS  PubMed  Google Scholar 

  20. Pylypenko O, Rak A, Reents R, Niculae A, Sidorovitch V, Cioaca MD, Bessolitsyna E, Thoma NH, Waldmann H, Schlichting I, Goody RS, Alexandrov K (2003) Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol Cell 11(2):483–494

    Article  CAS  PubMed  Google Scholar 

  21. Huang YC, Li YM, Chen Y, Pan M, Li YT, Yu L, Guo QX, Liu L (2013) Synthesis of autophagosomal marker protein LC3-II under detergent-free conditions. Angew Chem Int Ed Engl 52(18):4858–4862. doi:10.1002/anie.201209523

    Article  CAS  PubMed  Google Scholar 

  22. Olschewski D, Becker CF (2008) Chemical synthesis and semisynthesis of membrane proteins. Mol Biosyst 4(7):733–740

    Article  CAS  PubMed  Google Scholar 

  23. Melnyk RA, Partridge AW, Yip J, Wu Y, Goto NK, Deber CM (2003) Polar residue tagging of transmembrane peptides. Biopolymers 71(6):675–685

    Article  CAS  PubMed  Google Scholar 

  24. Johnson ECB, Kent SBH (2007) Towards the total chemical synthesis of integral membrane proteins: a general method for the synthesis of hydrophobic peptide-(alpha)thioester building blocks. Tetrahedron Lett 48(10):1795–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Becker CF, Oblatt-Montal M, Kochendoerfer GG, Montal M (2004) Chemical synthesis and single channel properties of tetrameric and pentameric TASPs (template-assembled synthetic proteins) derived from the transmembrane domain of HIV virus protein u (Vpu). J Biol Chem 279(17):17483–17489

    Article  CAS  PubMed  Google Scholar 

  26. Marsac Y, Cramer J, Olschewski D, Alexandrov K, Becker CFW (2006) Site-specific attachment of polyethylene glycol-like oligomers to proteins and peptides. Bioconjug Chem 17(6):1492–1498

    Article  CAS  PubMed  Google Scholar 

  27. Shen F, Huang YC, Tang S, Chen YX, Liu L (2011) Chemical synthesis of integral membrane proteins: methods and applications. Isr J Chem 51(8–9):940–952. doi:10.1002/ijch.201100076

    Article  CAS  Google Scholar 

  28. Shah NH, Dann GP, Vila-Perello M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134(28):11338–11341. doi:10.1021/ja303226x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vila-Perello M, Liu Z, Shah NH, Willis JA, Idoyaga J, Muir TW (2013) Streamlined expressed protein ligation using split inteins. J Am Chem Soc 135(1):286–292. doi:10.1021/ja309126m

    Article  CAS  PubMed  Google Scholar 

  30. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5(1):446–461. doi:10.1039/C3SC52951G

    Article  CAS  PubMed  Google Scholar 

  31. Volkmann G, Mootz HD (2013) Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 70(7):1185–1206. doi:10.1007/s00018-012-1120-4

    Article  CAS  PubMed  Google Scholar 

  32. Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289(21):14512–14519. doi:10.1074/jbc.R114.552653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11 - reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231. doi:10.1016/S0076-6879(09)64011-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chu NK, Becker CF (2009) Semisynthesis of membrane-attached prion proteins. Methods Enzymol 462:177–193

    Article  CAS  PubMed  Google Scholar 

  35. Dhar T, Mootz HD (2011) Modification of transmembrane and GPI-anchored proteins on living cells by efficient protein trans-splicing using the Npu DnaE intein. Chem Commun (Camb) 47:3063–3065

    Article  CAS  Google Scholar 

  36. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chembiochem 10(16):2579–2589

    Article  CAS  PubMed  Google Scholar 

  37. Zettler J, Schütz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583(5):909–914

    Article  CAS  PubMed  Google Scholar 

  38. Durek T, Becker CF (2005) Protein semi-synthesis: new proteins for functional and structural studies. Biomol Eng 22(5–6):153–72

    Article  CAS  PubMed  Google Scholar 

  39. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  40. Muttenthaler M, Albericio F, Dawson PE (2015) Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat Protoc 10(7):1067–1083. doi:10.1038/nprot.2015.061

    Article  CAS  PubMed  Google Scholar 

  41. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96(18):10068–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin DD, Xu MQ, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40(5):1393–1402

    Article  CAS  PubMed  Google Scholar 

  43. Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci 106(27):10999–11004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu NK, Olschewski D, Seidel R, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2010) Protein immobilization on liposomes and lipid-coated nanoparticles by protein trans-splicing. J Pept Sci 16(10):582–588

    Article  CAS  PubMed  Google Scholar 

  45. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95(12):6705–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. W. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hackl, S., Schmid, A., Becker, C.F.W. (2017). Semisynthesis of Membrane-Attached Proteins Using Split Inteins. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics