Skip to main content

Visualization of RAS/MAPK Signaling In Situ by the Proximity Ligation Assay (PLA)

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

  • 3471 Accesses

Abstract

RAS/MAPK signaling responds to diverse extracellular cues and regulates a wide array of cellular processes. Given its biological importance, abnormalities in RAS/MAPK signaling cascade have been intimately implicated in numerous human diseases, including cancer. Herein, we describe a novel methodology to study activation of this pivotal signaling pathway. The Proximity Ligation Assay (PLA) is employed to monitor kinase–substrate interactions between MEK1 and HSF1, or MEK1 and ERK1 in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480

    Article  CAS  PubMed  Google Scholar 

  2. Alessi DR, Saito Y, Campbell DG et al (1994) Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 13:1610–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosen LB, Ginty DD, Weber MJ et al (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207–1221

    Article  CAS  PubMed  Google Scholar 

  4. Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64:755–763

    Article  CAS  PubMed  Google Scholar 

  5. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  CAS  PubMed  Google Scholar 

  6. Butch ER, Guan KL (1996) Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2. J Biol Chem 271:4230–4235

    Article  CAS  PubMed  Google Scholar 

  7. Peng S, Zhang Y, Zhang J et al (2010) ERK in learning and memory: a review of recent research. Int J Mol Sci 11:222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caunt CJ, Sale MJ, Smith PD et al (2015) MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 15:577–592

    Article  CAS  PubMed  Google Scholar 

  9. Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16:281–298

    Article  CAS  PubMed  Google Scholar 

  10. Morris EJ, Jha S, Restaino CR et al (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3:742–750

    Article  CAS  PubMed  Google Scholar 

  11. Tang Z, Dai S, He Y et al (2015) MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160:729–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eberle AB, Jordan-Pla A, Ganez-Zapater A et al (2015) An interaction between RRP6 and SU(VAR)3-9 targets RRP6 to heterochromatin and contributes to heterochromatin maintenance in Drosophila melanogaster. PLoS Genet 11, e1005523

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taura J, Fernandez-Duenas V, Ciruela F (2015) Visualizing G protein-coupled receptor-receptor interactions in brain using proximity ligation in situ assay. Curr Protoc Cell Biol 67:17

    PubMed  Google Scholar 

  14. Ulke-Lemee A, Turner SR, MacDonald JA (2015) In situ analysis of Smoothelin-like 1 and Calmodulin interactions in smooth muscle cells by proximity ligation. J Cell Biochem 116:2667–2675

    Article  CAS  PubMed  Google Scholar 

  15. Gan N, Wu YC, Brunet M et al (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285:35528–35536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ammirante M, Rosati A, Gentilella A et al (2008) The activity of hsp90 alpha promoter is regulated by NF-kappa B transcription factors. Oncogene 27:1175–1178

    Article  CAS  PubMed  Google Scholar 

  17. Kumar MA, Nair M, Hema PS et al (2007) Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog 46:231–241

    Article  CAS  PubMed  Google Scholar 

  18. Mohan J, Gandhi AA, Bhavya BC et al (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281:17599–17611

    Article  CAS  PubMed  Google Scholar 

  19. Hartsough EJ, Basile KJ, Aplin AE (2014) Beneficial effects of RAF inhibitor in mutant BRAF splice variant-expressing melanoma. Mol Cancer Res 12:795–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kundumani-Sridharan V, Singh NK, Kumar S et al (2013) Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling. J Biol Chem 288:22150–22162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grewe B, Hoffmann B, Ohs I et al (2012) Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag. J Virol 86:2990–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh NK, Kundumani-Sridharan V, Kumar S et al (2012) Protein kinase N1 is a novel substrate of NFATc1-mediated cyclin D1-CDK6 activity and modulates vascular smooth muscle cell division and migration leading to inward blood vessel wall remodeling. J Biol Chem 287:36291–36304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pathria G, Wagner C, Wagner SN (2012) Inhibition of CRM1-mediated nucleocytoplasmic transport: triggering human melanoma cell apoptosis by perturbing multiple cellular pathways. J Invest Dermatol 132:2780–2790

    Article  CAS  PubMed  Google Scholar 

  24. Bondzi C, Grant S, Krystal GW (2000) A novel assay for the measurement of Raf-1 kinase activity. Oncogene 19:5030–5033

    Article  CAS  PubMed  Google Scholar 

  25. Yang P, An H, Liu X et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11:487–494

    Article  CAS  PubMed  Google Scholar 

  26. Miyaji M, Kortum RL, Surana R et al (2009) Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc Natl Acad Sci U S A 106:14502–14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gray MJ, Van Buren G, Dallas NA et al (2008) Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 100:109–120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkai Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tang, Z., Dai, C. (2017). Visualization of RAS/MAPK Signaling In Situ by the Proximity Ligation Assay (PLA). In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics