Skip to main content

ChIP-seq Data Processing for PcG Proteins and Associated Histone Modifications

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1480))

Abstract

Chromatin Immunoprecipitation followed by massively parallel DNA sequencing (ChIP-sequencing) has emerged as an essential technique to study the genome-wide location of DNA- or chromatin-associated proteins, such as the Polycomb group (PcG) proteins. After being generated by the sequencer, raw ChIP-seq sequence reads need to be processed by a data analysis pipeline. Here we describe the computational steps required to process PcG ChIP-seq data, including alignment, peak calling, and downstream analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  PubMed  Google Scholar 

  2. Shao Z, Raible F, Mollaaghababa R et al (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98:37–46

    Article  CAS  PubMed  Google Scholar 

  3. Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York, NY) 298:1039–1043

    Article  CAS  Google Scholar 

  4. Gao Z, Zhang J, Bonasio R et al (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45:344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tavares L, Dimitrova E, Oxley D et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao Z, Lee P, Stafford JM et al (2014) An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516:349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Francis NJ, Saurin AJ, Shao Z et al (2001) Reconstitution of a functional core polycomb repressive complex. Mol Cell 8:545–556

    Article  CAS  PubMed  Google Scholar 

  8. Saurin AJ, Shao Z, Erdjument-Bromage H et al (2001) A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412:655–660

    Article  CAS  PubMed  Google Scholar 

  9. Steffen PA, Ringrose L (2014) What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev 15:340–356

    Article  CAS  Google Scholar 

  10. Schwartz YB, Pirrotta V (2013) A new world of Polycombs: unexpected partnerships and emerging functions., Nature reviews. Genetics 14:853–864

    CAS  PubMed  Google Scholar 

  11. Czermin B, Melfi R, McCabe D et al (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196

    Article  CAS  PubMed  Google Scholar 

  12. Müller J, Hart CM, Francis NJ et al (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208

    Article  PubMed  Google Scholar 

  13. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smits AH, Jansen PWTC, Poser I et al (2013) Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res 41:e28

    Article  CAS  PubMed  Google Scholar 

  15. Simon J, Chiang A, Bender W et al (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158:131–144

    Article  CAS  PubMed  Google Scholar 

  16. Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13:2553–2564

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schuettengruber B, Oded Elkayam N, Sexton T et al (2014) Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep 9:219–233

    Article  CAS  PubMed  Google Scholar 

  18. Ku M, Koche RP, Rheinbay E et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4:e1000242

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mendenhall EM, Koche RP, Truong T et al (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 6:e1001244

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lynch MD, Smith AJH, De Gobbi M et al (2012) An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J 31:317–329

    Article  CAS  PubMed  Google Scholar 

  21. Long HK, Sims D, Heger A et al (2013) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife 2, e00348

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Heeringen SJ, Akkers RC, van Kruijsbergen I et al (2014) Principles of nucleation of H3K27 methylation during embryonic development. Genome Res 24:401–410

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wachter E, Quante T, Merusi C et al (2014) Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. Elife 3, e03397

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dietrich N, Lerdrup M, Landt E et al (2012) REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS Genet 8:e1002494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnold P, Schöler A, Pachkov M et al (2013) Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res 23:60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Sun B, Erwin J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 215

    Google Scholar 

  28. Tsai M-C, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science (New York, NY) 329:689–693

    Article  CAS  Google Scholar 

  29. da Rocha ST, Boeva V, Escamilla-Del-Arenal M et al (2014) Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol Cell 53:301–316

    Article  PubMed  Google Scholar 

  30. Kaneko S, Bonasio R, Saldaña-Meyer R et al (2014) Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell 53:290–300

    Article  CAS  PubMed  Google Scholar 

  31. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Akkers RC, van Heeringen SJ, Jacobi UG et al (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Irimia M, Tena JJ, Alexis MS et al (2012) Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res 22:2356–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Richly H, Aloia L, Di Croce L (2011) Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis 2, e204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Enderle D, Beisel C, Stadler M (2011) Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res 21(2):216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herz H-M, Mohan M, Garrett AS et al (2012) Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila. Mol Cell Biol 32:1683–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49:1134–1146

    Article  CAS  PubMed  Google Scholar 

  38. Bonn S, Zinzen RP, Girardot C et al (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44:148–156

    Article  CAS  PubMed  Google Scholar 

  39. Rada-Iglesias A, Bajpai R, Swigut T et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  CAS  PubMed  Google Scholar 

  40. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30:2114–2120

    Article  CAS  Google Scholar 

  41. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25:1754–1760

    Article  CAS  Google Scholar 

  42. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25:2078–2079

    Article  Google Scholar 

  43. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England) 26:841–842

    Article  CAS  Google Scholar 

  44. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marinov GK, Kundaje A, Park PJ et al (2014) Large-scale quality analysis of published ChIP-seq data. G3 (Bethesda, MD) 4:209–223

    Article  Google Scholar 

  46. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed  Google Scholar 

  48. Blackledge NP, Farcas AM, Kondo T et al (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kent W, Sugnet C, Furey T (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McLean CY, Bristor D, Hiller M et al (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  52. Cock PJA, Fields CJ, Goto N et al (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771

    Article  CAS  PubMed  Google Scholar 

  53. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  54. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, 00, 3

    Google Scholar 

  56. Daley T, Smith A (2013) Predicting the molecular complexity of sequencing libraries. Nat Methods 10:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robinson J, Thorvaldsdóttir H (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Feng X, Grossman R, Stein L (2011) PeakRanger: A cloud-enabled peak caller for ChIP-seq data. BMC Bioinformatics 12:139

    Article  PubMed  PubMed Central  Google Scholar 

  59. ENCODE Project Consortium, Bernstein BE, Birney E et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  60. modENCODE Consortium, Celniker SE, Dillon LA et al (2009) Unlocking the secrets of the genome. Nature 459:927–930

    Article  Google Scholar 

  61. de la Calle Mustienes E, Gómez-Skarmeta JL, Bogdanović O (2015) Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos. Genomics Data 6:79

    Google Scholar 

  62. Song Q, Smith AD (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics (Oxford, England) 27:870–871

    Article  CAS  Google Scholar 

  63. Brinkman AB, Gu H, Bartels SJJ et al (2012) Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22:1128–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lund E, Oldenburg AR, Collas P (2014) Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res 42:92

    Article  Google Scholar 

  65. Shen L, Shao N, Liu X et al (2014) ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15:284

    Article  PubMed  PubMed Central  Google Scholar 

  66. D’haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23:1499–1501

    Article  PubMed  Google Scholar 

  67. Bowman SK, Deaton AM, Domingues H et al (2014) H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex. Elife 3, e02833

    Article  PubMed  PubMed Central  Google Scholar 

  68. Orsi G, Kasinathan S (2014) High-resolution mapping defines the cooperative architecture of Polycomb response elements. Genome Res 24(5):809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao Q, Wang X, Zhao M et al (2014) The central role of EED in the orchestration of polycomb group complexes. Nat Commun 5:3127

    PubMed  PubMed Central  Google Scholar 

  70. Pemberton H, Anderton E, Patel H et al (2014) Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol 15:R23

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bernstein BE, Stamatoyannopoulos JA, Costello JF et al (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28:1045–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Farcas AM, Blackledge NP, Sudbery I et al (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1, e00205

    Article  PubMed  PubMed Central  Google Scholar 

  73. Frangini A, Sjöberg M, Roman-Trufero M et al (2013) The aurora B kinase and the polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes. Mol Cell 51:647–661

    Article  CAS  PubMed  Google Scholar 

  74. Pasini D, Cloos PAC, Walfridsson J et al (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464:306–310

    Article  CAS  PubMed  Google Scholar 

  75. Peng JC, Valouev A, Swigut T et al (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139:1290–1302

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

O.B. is supported by an Australian Research Council Discovery Early Career Researcher Award—DECRA (DE140101962); S.J.v.H. is supported by the Netherlands Organization for Scientific Research (NWO-ALW grant 863.12.002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. van Heeringen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bogdanovic´, O., van Heeringen, S.J. (2016). ChIP-seq Data Processing for PcG Proteins and Associated Histone Modifications. In: Lanzuolo, C., Bodega, B. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 1480. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6380-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6380-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6378-2

  • Online ISBN: 978-1-4939-6380-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics