Skip to main content

Determination of the Mechanical Strength of Microcapsules

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

The promise of pancreatic islet transplantation is hindered by organ shortage, and the need for immunosuppression of transplant recipient in order to prevent rejection. Alginate microencapsulation can overcome these hurdles; however further optimization of this technique is required. Among the critical factors to be optimized is the durability of alginate microcapsules, which can be determined by their mechanical strength tests. Here we describe several simple and reliable methods to assist in assessing the mechanical strength of alginate beads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatziavramidis DT, Karatzas TM, Chrousos GP (2013) Pancreatic islet cell transplantation: an update. Ann Biomed Eng 41:469–476

    Article  Google Scholar 

  2. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  CAS  Google Scholar 

  3. Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  Google Scholar 

  4. Amsden B, Turner N (1999) Diffusion characteristics of calcium alginate gels. Biotechnol Bioeng 65:605–610

    Article  CAS  Google Scholar 

  5. De Vos P, De Haan B, Van Schilfgaarde R (1997) Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18:273–278

    Article  Google Scholar 

  6. Kendall WF Jr, Darrabie MD, El-Shewy HM, Opara EC (2004) Effect of alginate composition and purity on alginate microspheres. J Microencapsul 21:821–828

    Article  CAS  Google Scholar 

  7. Haug AMS, Larsen B, Smidsrod O (1967) Correlation between chemical structure and physical properties of alginates. Acta Chem Scand 21:768–778

    Article  CAS  Google Scholar 

  8. Thanos CG, Bintz BE, Bell WJ, Qian H, Schneider PA, MacArthur DH, Emerich DF (2006) Intraperitoneal stability of alginate-polyornithine microcapsules in rats: an FTIR and SEM analysis. Biomaterials 27:3570–3579

    CAS  Google Scholar 

  9. Thu B, Bruheim P, Espevik T, Smidsrod O, Soon-Shiong P, Skjak-Braek G (1996) Alginate polycation microcapsules. I Interaction between alginate and polycation. Biomaterials 17:1031–1040

    Article  CAS  Google Scholar 

  10. Morch YA, Donati I, Strand BL, Skjak-Braek G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480

    Article  CAS  Google Scholar 

  11. Peirone M, Ross CJ, Hortelano G, Brash JL, Chang PL (1998) Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J Biomed Mater Res 42:587–596

    Article  CAS  Google Scholar 

  12. Li HB, Jiang H, Wang CY, Duan CM, Ye Y, Su XP, Kong QX, Wu JF, Guo XM (2006) Comparison of two types of alginate microcapsules on stability and biocompatibility in-vitro and in-vivo. Biomed Mater 1:42–47

    Google Scholar 

  13. Tam SK, Bilodeau S, Dusseault J, Langlois G, Halle JP, Yahia LH (2011) Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater 7:1683–1692

    Article  CAS  Google Scholar 

  14. Schrezenmeir J, Kirchgessner J, Gerö L, Kunz LA, Beyer J, Mueller-Klieser W (1994) Effect of microencapsulation on oxygen distribution in islets organs. Transplantation 57:1308–1314

    Article  CAS  Google Scholar 

  15. Zimmermann U, Mimietz S, Zimmermann H, Hillgartner M, Schneider H, Ludwig J, Hasse C, Haase A, Rothmund M, Fuhr G (2000) Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 29:564–572, 574, 576 passim

    CAS  Google Scholar 

  16. van Raamsdonk JM, Cornelius RM, Brash JL, Chang PL (2002) Deterioration of polyamino acid-coated alginate microcapsules in-vivo. J Biomater Sci Polym Ed 13:863–884

    Google Scholar 

  17. Wang T, Lacik I, Brissova M, Anilkumar AV, Prokop A, Hunkeler D, Green R, Shahrokhi K, Powers AC (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 15:358–362

    Article  CAS  Google Scholar 

  18. De Castro M, Orive G, Hernandez RM, Gascon AR, Pedraz JL (2005) Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. J Microencapsul 22:303–315

    Article  Google Scholar 

  19. Darrabie MD, Kendall WF Jr, Opara EC (2005) Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials 26:6846–6852

    Article  CAS  Google Scholar 

  20. Bhujbal SV, Paredes-Juarez GA, Niclou SP, de Vos P (2014) Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. J Mech Behav Biomed Mater 37:196–208

    Article  CAS  Google Scholar 

  21. Sakai S, Ono T, Ijima H, Kawakami K (2000) Control of molecular weight cut-off for immunoisolation by multilayering glycol chitosan-alginate polyion complex on alginate-based microcapsules. J Microencapsul 17:691–699

    Article  CAS  Google Scholar 

  22. Chicheportiche D, Reach G (1988) In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia 31:54–57

    CAS  Google Scholar 

  23. Poncelet D, Neufeld RJ (1989) Shear breakage of nylon membrane microcapsules in a turbine reactor. Biotechnol Bioeng 33:95–103

    Article  CAS  Google Scholar 

  24. Robitaille R, Pariseau JF, Leblond FA, Lamoureux M, Lepage Y, Hallé JP (1999) Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. III Biocompatibility Of smaller versus standard microcapsules. J Biomed Mater Res 44:116–120

    Article  CAS  Google Scholar 

  25. Hobbs HA, Kendall WF Jr, Darrabie M, Opara EC (2001) Prevention of morphological changes in alginate microcapsules for islet xenotransplantation. J Invest Med 49:572–575

    Article  CAS  Google Scholar 

  26. Chan ES, Lee BB, Ravindra P, Poncelet D (2009) Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. J Colloid Interface Sci 338:63–72

    Article  CAS  Google Scholar 

  27. Goosen MF, King GA, McKnight CA, Marcotte N (1989) Animal cell culture engineering using alginate polycation microcapsules of controlled membrane molecular weight cut-off. J MembrSci 41:323–343

    CAS  Google Scholar 

  28. Jay AW, Edwards MA (1968) Mechanical properties of semipermeable microcapsules. Can J Physiol Pharmacol 46:731–737

    Article  CAS  Google Scholar 

  29. Rehor A, Canaple L, Zhang Z, Hunkeler D (2001) The compressive deformation of multicomponent microcapsules: influence of size, membrane thickness, and compression speed. J Biomater Sci Polym Ed 12:157–170

    Article  CAS  Google Scholar 

  30. Leblond FA, Tessier J, Halle JP (1996) Quantitative method for the evaluation of biomicrocapsule resistance to mechanical stress. Biomaterials 17:2097–2102

    Article  CAS  Google Scholar 

  31. Van Raamsdonk JM, Chang PL (2001) Osmotic pressure test: a simple, quantitative method to assess the mechanical stability of alginate microcapsules. J Biomed Mater Res 54:264–271

    Article  Google Scholar 

  32. van Hoogmoed CG, Busscher HJ, de Vos P (2003) Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. J Biomed Mater Res A 67:172–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus D. Darabbie M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Darabbie, M.D., Opara, E.C. (2017). Determination of the Mechanical Strength of Microcapsules. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics