Skip to main content

Historical Perspectives and Current Challenges in Cell Microencapsulation

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.

In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.

It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bisceglie VV (1933) Uber die antineoplastische Immunitat. Krebsforsch 40:141–158

    Article  Google Scholar 

  2. Algire GH, Weaver JM, Prehn RT (1954) Growth of cells in vivo in diffusion chambers. I Survival of homografts in mice. J Natl Cancer Inst 15:493–507

    CAS  Google Scholar 

  3. Vaithilingam V, Tuch BE (2011) Islet transplantation and encapsulation: an update on recent developments. Rev Diabet Stud 8(1):51–67

    Article  Google Scholar 

  4. de Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68:15–34. doi:10.1016/j.addr.2013.11.005

    Article  CAS  Google Scholar 

  5. Liu HW, Ofosu FA, Chang PL (1993) Expression of human factor IX by microencapsulated recombinant fibroblasts. Hum Gene Ther 4:291–301

    Article  CAS  Google Scholar 

  6. Koo J, Chang TSM (1993) Secretion of erythropoietin from microencapsulated rat kidney cells. Int J Artif Organs 16:557–560

    CAS  Google Scholar 

  7. Chang PL, Shen N, Westcott AJ (1993) Delivery of recombinant gene products with microencapsulated cells in vivo. Hum Gene Ther 4:433–440

    Article  CAS  Google Scholar 

  8. Cieslinski DA, David Humes H (1994) Tissue engineering of a bioartificial kidney. Biotechnol Bioeng 43(7):678–681. doi:10.1002/bit.260430718

    Article  CAS  Google Scholar 

  9. Uludag H, Sefton MV (1993) Microencapsulated human hepatoma (HepG2) cells: in vitro growth and protein release. J Biomed Mater Res 27(10):1213–1224

    Article  CAS  Google Scholar 

  10. Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4:415–436

    Article  CAS  Google Scholar 

  11. Aebischer P, Goddard M, Signore AP, Timpson RL (1994) Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Exp Neurol 126:151–158

    Article  CAS  Google Scholar 

  12. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  CAS  Google Scholar 

  13. Opara EC, Kendall WF Jr (2002) Immunoisolation techniques for islet cell transplantation. Expert Opin Biol Ther 2(5):503–511

    Article  Google Scholar 

  14. Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1-2):29–64

    Article  CAS  Google Scholar 

  15. De Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8(8):363–366

    Article  Google Scholar 

  16. Wilson JT, Chaikof EL (2008) Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 60(2):124–145. doi:10.1016/j.addr.2007.08.034

    Article  CAS  Google Scholar 

  17. Aebischer P, Pochon NAM, Heyd B, DÇglon N, Joseph JM, Zurn AD, Baetge EE, Hammang JP, Goddard M, Lysaght M, Kaplan F, Kato AC, Schluep M, Hirt L, Regli F, Porchet F, De Tribolet N (1996) Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum Gene Ther 7:851–860

    Article  CAS  Google Scholar 

  18. Haisch A, Groger A, Radke C, Ebmeyer J, Sudhoff H, Grasnick G, Jahnke V, Burmester GR, Sittinger M (2000) Macroencapsulation of human cartilage implants: pilot study with polyelectrolyte complex membrane encapsulation. Biomaterials 21(15):1561–1566

    Article  CAS  Google Scholar 

  19. Risbud MV, Bhargava S, Bhonde RR (2003) In vivo biocompatibility evaluation of cellulose macrocapsules for islet immunoisolation: Implications of low molecular weight cut-off. J Biomed Mater Res A 66(1):86–92. doi:10.1002/jbm.a.10522

    Article  CAS  Google Scholar 

  20. Prochorov AV, Tretjak SI, Goranov VA, Glinnik AA, Goltsev MV (2008) Treatment of insulin dependent diabetes mellitus with intravascular transplantation of pancreatic islet cells without immunosuppressive therapy. Adv Med Sci 53(2):240–244

    Article  CAS  Google Scholar 

  21. McQuilling JP, Arenas-Herrera J, Childers C, Pareta RA, Khanna O, Jiang B, Brey EM, Farney AC, Opara EC (2011) New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant Proc 43(9):3262–3264. doi:10.1016/j.transproceed.2011.10.030

    Article  CAS  Google Scholar 

  22. Opara EC, McQuilling JP, Farney AC (2013) Microencapsulation of pancreatic islets for use in a bioartificial pancreas. Methods Mol Biol 1001:261–266. doi:10.1007/978-1-62703-363-3_21

    Article  CAS  Google Scholar 

  23. Pareta R, McQuilling JP, Sittadjody S, Jenkins R, Bowden S, Orlando G, Farney AC, Brey EM, Opara EC (2014) Long-term function of islets encapsulated in a redesigned alginate microcapsule construct in omentum pouches of immune-competent diabetic rats. Pancreas 43(4):605–613. doi:10.1097/mpa.0000000000000107

    Article  CAS  Google Scholar 

  24. Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv 6(11):1161–1173

    Article  CAS  Google Scholar 

  25. Cheung CY, Anseth KS (2009) Immunoisolative encapsulation system. CO, US Patent US 20090028945

    Google Scholar 

  26. Cornolti R, Figliuzzi M, Remuzzi A (2009) Effect of micro- and macroencapsulation on oxygen consumption by pancreatic islets. Cell Transplant 18(2):195–201

    Article  Google Scholar 

  27. Pattani A, Patravale VB, Panicker L, Potdar PD (2009) Immunological effects and membrane interactions of chitosan nanoparticles. Mol Pharm 6(2):345–352

    Article  CAS  Google Scholar 

  28. Tam SK, Dusseault J, Bilodeau S, Langlois G, Halle JP, Yahia L (2011) Factors influencing alginate gel biocompatibility. J Biomed Mater Res A 98(1):40–52

    Article  CAS  Google Scholar 

  29. Avgoustiniatos ES, Colton CK (1997) Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue. Ann NY Acad Sci 31(831):145–167

    Google Scholar 

  30. Dionne KE, Colton CK, Yarmush ML (1993) Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 42(1):12–21

    Article  CAS  Google Scholar 

  31. Ludwig B, Rotem A, Schmid J, Weir GC, Colton CK, Brendel MD, Neufeld T, Block NL, Yavriyants K, Steffen A, Ludwig S, Chavakis T, Reichel A, Azarov D, Zimermann B, Maimon S, Balyura M, Rozenshtein T, Shabtay N, Vardi P, Bloch K, de Vos P, Schally AV, Bornstein SR, Barkai U (2012) Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci U S A 109(13):5022–5027. doi:10.1073/pnas.1201868109

    Article  CAS  Google Scholar 

  32. Gandhi JK, Opara EC, Brey EM (2013) Alginate-based strategies for therapeutic vascularization. Ther Deliv 4(3):327–341. doi:10.4155/tde.12.163

    Article  CAS  Google Scholar 

  33. Khanna O, Moya ML, Greisler HP, Opara EC, Brey EM (2010) Multilayered microcapsules for the sustained-release of angiogenic proteins from encapsulated cells. Am J Surg 200(5):655–658. doi:10.1016/j.amjsurg.2010.08.001

    Article  CAS  Google Scholar 

  34. Khanna O, Moya ML, Opara EC, Brey EM (2010) Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J Biomed Mater Res A 95(2):632–640. doi:10.1002/jbm.a.32883

    Article  CAS  Google Scholar 

  35. Sakai S, Ono T, Ijima H, Kawakami K (2000) Control of molecular weight cut-off for immunoisolation by multilayering glycol chitosan-alginate polyion complex on alginate-based microcapsules. J Microencapsul 17(6):691–699

    Article  CAS  Google Scholar 

  36. Chia SM, Wan AC, Quek CH, Mao HQ, Xu X, Shen L, Ng ML, Leong KW, Yu H (2002) Multi-layered microcapsules for cell encapsulation. Biomaterials 23(3):849–856

    Article  CAS  Google Scholar 

  37. Khattak SF, Chin KS, Bhatia SR, Roberts SC (2007) Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng 96(1):156–166. doi:10.1002/bit.21151

    Article  CAS  Google Scholar 

  38. Barkai U, Weir GC, Colton CK, Ludwig B, Bornstein SR, Brendel MD, Neufeld T, Bremer C, Leon A, Evron Y, Yavriyants K, Azarov D, Zimermann B, Maimon S, Shabtay N, Balyura M, Rozenshtein T, Vardi P, Bloch K, de Vos P, Rotem A (2013) Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant 22(8):1463–1476. doi:10.3727/096368912x657341

    Article  Google Scholar 

  39. Evron Y, Zimermann B, Ludwig B, Barkai U, Colton CK, Weir GC, Arieli B, Maimon S, Shalev N, Yavriyants K, Goldman T, Gendler Z, Eizen L, Vardi P, Bloch K, Barthel A, Bornstein SR, Rotem A (2015) Oxygen supply by photosynthesis to an implantable islet cell device. Horm Metab Res 47(1):24–30. doi:10.1055/s-0034-1394375

    CAS  Google Scholar 

  40. Neufeld T, Ludwig B, Barkai U, Weir GC, Colton CK, Evron Y, Balyura M, Yavriyants K, Zimermann B, Azarov D, Maimon S, Shabtay N, Rozenshtein T, Lorber D, Steffen A, Willenz U, Bloch K, Vardi P, Taube R, de Vos P, Lewis EC, Bornstein SR, Rotem A (2013) The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 8(8), e70150. doi:10.1371/journal.pone.0070150

    Article  CAS  Google Scholar 

  41. Papas KK, Bellin MD, Sutherland DE, Suszynski TM, Kitzmann JP, Avgoustiniatos ES, Gruessner AC, Mueller KR, Beilman GJ, Balamurugan AN, Loganathan G, Colton CK, Koulmanda M, Weir GC, Wilhelm JJ, Qian D, Niland JC, Hering BJ (2015) Islet oxygen consumption rate (OCR) dose predicts insulin independence in clinical islet autotransplantation. PLoS One 10(8), e0134428. doi:10.1371/journal.pone.0134428

    Article  CAS  Google Scholar 

  42. Papas KK, Colton CK, Nelson RA, Rozak PR, Avgoustiniatos ES, Scott WE 3rd, Wildey GM, Pisania A, Weir GC, Hering BJ (2007) Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice. Am J Transplant 7(3):707–713. doi:10.1111/j.1600-6143.2006.01655.x

    Article  CAS  Google Scholar 

  43. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O'Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–H576

    Article  CAS  Google Scholar 

  44. Trivedi N, Steil GM, Colton CK, Bonner-Weir S, Weir GC (2000) Improved vascularization of planar membrane diffusion devices following continuous infusion of vascular endothelial growth factor. Cell Transplant 9(1):115–124

    CAS  Google Scholar 

  45. Isayeva IS, Kasibhatla BT, Rosenthal KS, Kennedy JP (2003) Characterization and performance of membranes designed for macroencapsulation/implantation of pancreatic islet cells. Biomaterials 24(20):3483–3491

    Article  CAS  Google Scholar 

  46. Paredes Juarez GA, Spasojevic M, Faas MM, de Vos P (2014) Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2:26. doi:10.3389/fbioe.2014.00026

    Article  Google Scholar 

  47. Coronel MM, Stabler CL (2013) Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol 24(5):900–908. doi:10.1016/j.copbio.2013.05.004

    Article  CAS  Google Scholar 

  48. Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL (2012) Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A 109(11):4245–4250. doi:10.1073/pnas.1113560109

    Article  CAS  Google Scholar 

  49. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, Colton CK, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein SR (2013) Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A 110(47):19054–19058. doi:10.1073/pnas.1317561110

    Article  CAS  Google Scholar 

  50. Rokstad AM, Lacik I, de Vos P, Strand BL (2014) Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 67–68:111–130. doi:10.1016/j.addr.2013.07.010

    Article  CAS  Google Scholar 

  51. De Haan BJ, Faas MM, De Vos P (2003) Factors influencing insulin secretion from encapsulated islets. Cell Transplant 12(6):617–625

    Article  Google Scholar 

  52. De Vos P, Smedema I, van Goor H, Moes H, van Zanten J, Netters S, de Leij LF, de Haan A, De Haan BJ (2003) Association between macrophage activation and function of micro-encapsulated rat islets. Diabetologia 46(5):666–673

    Article  CAS  Google Scholar 

  53. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953. doi:10.1016/j.biomaterials.2008.04.023

    Article  CAS  Google Scholar 

  54. Hilborn J, Bjursten LM (2007) A new and evolving paradigm for biocompatibility. J Tissue Eng Regen Med 1(2):110–119. doi:10.1002/term.4

    Article  CAS  Google Scholar 

  55. Bhujbal SV, de Haan B, Niclou SP, de Vos P (2014) A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells. Sci Rep 4:6856. doi:10.1038/srep06856

    Article  CAS  Google Scholar 

  56. Bhujbal SV, Paredes-Juarez GA, Niclou SP, de Vos P (2014) Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. J Mech Behav Biomed Mater 37:196–208. doi:10.1016/j.jmbbm.2014.05.020

    Article  CAS  Google Scholar 

  57. Zimmermann U, Thurmer F, Jork A, Weber M, Mimietz S, Hillgartner M, Brunnenmeier F, Zimmermann H, Westphal I, Fuhr G, Noth U, Haase A, Steinert A, Hendrich C (2001) A novel class of amitogenic alginate microcapsules for long-term immunoisolated transplantation. Ann NY Acad Sci 944:199–215

    Article  CAS  Google Scholar 

  58. Hasse C, Zielke A, Klock G, Schlosser A, Barth P, Zimmermann U, Sitter H, Lorenz W, Rothmund M (1998) Amitogenic alginates: key to first clinical application of microencapsulation technology. World J Surg 22:659–665

    Article  CAS  Google Scholar 

  59. De Vos P, Vegter D, Strubbe JH, De Haan BJ, Van Schilfgaarde R (1997) Impaired glucose tolerance in recipients of an intraperitoneally implanted microencapsulated islet allograft is caused by the slow diffusion of insulin through the peritoneal membrane. Transplant Proc 29:756–757

    Article  Google Scholar 

  60. Klôck G, Pfeffermann A, Ryser C, Grîhn P, Kuttler B, Hahn HJ, Zimmermann U (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18:707–713

    Article  Google Scholar 

  61. De Vos P, Van Hoogmoed CG, Busscher HJ (2002) Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mater Res 60:252–259

    Article  CAS  Google Scholar 

  62. De Vos P, De Haan BJ, Wolters GHJ, Strubbe JH, Van Schilfgaarde R (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40:262–270

    Article  Google Scholar 

  63. Tam SK, Bilodeau S, Dusseault J, Langlois G, Halle JP, Yahia LH (2011) Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater 7(4):1683–1692. doi:10.1016/j.actbio.2010.12.006

    Article  CAS  Google Scholar 

  64. Bunger CM, Gerlach C, Freier T, Schmitz KP, Pilz M, Werner C, Jonas L, Schareck W, Hopt UT, De Vos P (2003) Biocompatibility and surface structure of chemically modified immunoisolating alginate-PLL capsules. J Biomed Mater Res 67A(4):1219–1227

    Article  CAS  Google Scholar 

  65. Van Hoogmoed CG, Busscher HJ, De Vos P (2003) Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. J Biomed Mater Res 67A(1):172–178

    Article  CAS  Google Scholar 

  66. Tam KT, Dusseault J, Polizu S, MÇnard M, HallÇ JP, L'Hocine Y (2005) Physicochemical model of alginate-poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 34:6950–6961

    Article  CAS  Google Scholar 

  67. De Vos P, De Haan BJ, Kamps JA, Faas MM, Kitano T (2007) Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J Biomed Mater Res A 80(4):813–819

    Article  CAS  Google Scholar 

  68. De Vos P, Van Hoogmoed CG, van Zanten J, Netter S, Strubbe JH, Busscher HJ (2003) Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 24(2):305–312

    Article  Google Scholar 

  69. Ponce S, Orive G, Hernandez R, Gascon AR, Pedraz JL, De Haan BJ, Faas MM, Mathieu HJ, De Vos P (2006) Chemistry and the biological response against immunoisolating alginate-polycation capsules of different composition. Biomaterials 27(28):4831–4839

    Article  CAS  Google Scholar 

  70. Poncelet D, de Vos P, Suter N, Jayasinghe SN (2012) Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences. Adv Healthc Mater 1(1):27–34. doi:10.1002/adhm.201100001

    Article  CAS  Google Scholar 

  71. De Vos P, De Haan BJ, Van Schilfgaarde R (1997) Upscaling the production of encapsulated islets. Biomaterials 18:1085–1090

    Article  Google Scholar 

  72. Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, Li J, Langan E, Wyckoff J, Loo WS, Jhunjhunwala S, Chiu A, Siebert S, Tang K, Hollister-Lock J, Aresta-Dasilva S, Bochenek M, Mendoza-Elias J, Wang Y, Qi M, Lavin DM, Chen M, Dholakia N, Thakrar R, Lacik I, Weir GC, Oberholzer J, Greiner DL, Langer R, Anderson DG (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651. doi:10.1038/nmat4290

    Article  CAS  Google Scholar 

  73. Paredes-Juarez GA, de Haan BJ, Faas MM, de Vos P (2013) The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules. J Control Release 172(3):983–992. doi:10.1016/j.jconrel.2013.09.009

    Article  CAS  Google Scholar 

  74. Hall KK, Gattas-Asfura KM, Stabler CL (2011) Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomater 7(2):614–624. doi:10.1016/j.actbio.2010.07.016

    Article  CAS  Google Scholar 

  75. de Vos P, Bucko M, Gemeiner P, Navratil M, Svitel J, Faas M, Strand BL, Skjak-Braek G, Morch YA, Vikartovska A, Lacik I, Kollarikova G, Orive G, Poncelet D, Pedraz JL, Ansorge-Schumacher MB (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30(13):2559–2570. doi:10.1016/j.biomaterials.2009.01.014

    Article  CAS  Google Scholar 

  76. Orive G, Tam SK, Pedraz JL, Halle JP (2006) Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials 27(20):3691–3700. doi:10.1016/j.biomaterials.2006.02.048

    Article  CAS  Google Scholar 

  77. De Vos P, De Haan B, Van Schilfgaarde R (1997) Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18:273–278

    Article  Google Scholar 

  78. Dang TT, Thai AV, Cohen J, Slosberg JE, Siniakowicz K, Doloff JC, Ma M, Hollister-Lock J, Tang KM, Gu Z, Cheng H, Weir GC, Langer R, Anderson DG (2013) Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34(23):5792–5801. doi:10.1016/j.biomaterials.2013.04.016

    Article  CAS  Google Scholar 

  79. Liu WF, Ma M, Bratlie KM, Dang TT, Langer R, Anderson DG (2011) Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32(7):1796–1801. doi:10.1016/j.biomaterials.2010.11.029

    Article  CAS  Google Scholar 

  80. Paredes Juarez GA, De Haan BJ, Faas MM, De Vos P (2014) A technology platform to test the efficacy of purification of alginate. Materials 7:2087–2103. doi:10.3390/ma7032087

    Article  CAS  Google Scholar 

  81. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–175. doi:10.1111/j.1600-065X.2012.01146.x

    Article  CAS  Google Scholar 

  82. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. doi:10.1038/ni.1863

    Article  CAS  Google Scholar 

  83. Bauer S, Muller T, Hamm S (2009) Pattern recognition by Toll-like receptors. Adv Exp Med Biol 653:15–34

    Article  CAS  Google Scholar 

  84. Zeuthen LH, Fink LN, Frokiaer H (2008) Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124(4):489–502. doi:10.1111/j.1365-2567.2007.02800.x

    Article  CAS  Google Scholar 

  85. Mahou R, Tran NM, Dufresne M, Legallais C, Wandrey C (2012) Encapsulation of Huh-7 cells within alginate-poly(ethylene glycol) hybrid microspheres. J Mater Sci Mater Med 23(1):171–179. doi:10.1007/s10856-011-4512-3

    Article  CAS  Google Scholar 

  86. Yang D, Guo S, Qiao J, Nie J (2011) Investigation on the preparation and application of chitosan/alginate microcapsules. J Control Release 152(Suppl 1):e71–e72. doi:10.1016/j.jconrel.2011.08.130

    Article  CAS  Google Scholar 

  87. Rokstad AM, Brekke OL, Steinkjer B, Ryan L, Kollarikova G, Strand BL, Skjak-Braek G, Lacik I, Espevik T, Mollnes TE (2011) Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater 7(6):2566–2578. doi:10.1016/j.actbio.2011.03.011

    Article  CAS  Google Scholar 

  88. Mazzitelli S, Luca G, Mancuso F, Calvitti M, Calafiore R, Nastruzzi C, Johnson S, Badylak SF (2011) Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications. Acta Biomater 7(3):1050–1062. doi:10.1016/j.actbio.2010.10.005

    Article  CAS  Google Scholar 

  89. Gardner CM, Burke NA, Chu T, Shen F, Potter MA, Stover HD (2011) Poly(methyl vinyl ether-alt-maleic acid) polymers for cell encapsulation. J Biomater Sci Polym Ed 22(16):2127–2145. doi:10.1163/092050610x535149

    Article  CAS  Google Scholar 

  90. De Haan BJ, Rossi A, Faas MM, Smelt MJ, Sonvico F, Colombo P, de Vos P (2011) Structural surface changes and inflammatory responses against alginate-based microcapsules after exposure to human peritoneal fluid. J Biomed Mater Res A 98(3):394–403

    Article  CAS  Google Scholar 

  91. Santos E, Zarate J, Orive G, Hernandez RM, Pedraz JL (2010) Biomaterials in cell microencapsulation. Adv Exp Med Biol 670:5–21

    Article  CAS  Google Scholar 

  92. Tam SK, de Haan BJ, Faas MM, Halle JP, Yahia L, de Vos P (2009) Adsorption of human immunoglobulin to implantable alginate-poly-L-lysine microcapsules: effect of microcapsule composition. J Biomed Mater Res A 89(3):609–615. doi:10.1002/jbm.a.32002

    Article  CAS  Google Scholar 

  93. Gattas-Asfura KM, Stabler CL (2009) Chemoselective cross-linking and functionalization of alginate via Staudinger ligation. Biomacromolecules 10(11):3122–3129. doi:10.1021/bm900789a

    Article  CAS  Google Scholar 

  94. De Castro M, Orive G, Hernandez RM, Bartkowiak A, Brylak W, Pedraz JL (2009) Biocompatibility and in vivo evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res A 91(4):1119–1130. doi:10.1002/jbm.a.32270

    Article  CAS  Google Scholar 

  95. Qi M, Strand BL, Morch Y, Lacik I, Wang Y, Salehi P, Barbaro B, Gangemi A, Kuechle J, Romagnoli T, Hansen MA, Rodriguez LA, Benedetti E, Hunkeler D, Skjak-Braek G, Oberholzer J (2008) Encapsulation of human islets in novel inhomogeneous alginate-Ca2+/Ba2+ microbeads: in vitro and in vivo function. Artif Cells Blood Substit Immobil Biotechnol 36(5):403–420. doi:10.1080/10731190802369755

    Article  CAS  Google Scholar 

  96. Marsich E, Borgogna M, Donati I, Mozetic P, Strand BL, Salvador SG, Vittur F, Paoletti S (2008) Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A 84(2):364–376

    Article  CAS  Google Scholar 

  97. Thanos CG, Calafiore R, Basta G, Bintz BE, Bell WJ, Hudak J, Vasconcellos A, Schneider P, Skinner SJ, Geaney M, Tan P, Elliot RB, Tatnell M, Escobar L, Qian H, Mathiowitz E, Emerich DF (2007) Formulating the alginate-polyornithine biocapsule for prolonged stability: evaluation of composition and manufacturing technique. J Biomed Mater ResA 83(1):216–224

    Article  CAS  Google Scholar 

  98. Baruch L, Machluf M (2006) Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers 82(6):570–579. doi:10.1002/bip.20509

    Article  CAS  Google Scholar 

  99. Shen F, Li AA, Cornelius RM, Cirone P, Childs RF, Brash JL, Chang PL (2005) Biological properties of photocrosslinked alginate microcapsules. J Biomed Mater Res 75B(2):425–434

    Article  CAS  Google Scholar 

  100. Orive G, Carcaboso AM, Hernandez RM, Gascon AR, Pedraz JL (2005) Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 6(2):927–931

    Article  CAS  Google Scholar 

  101. Orive G, Bartkowiak A, Lisiecki S, De CM, Hernandez RM, Gascon AR, Pedraz JL (2005) Biocompatible oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res B Appl Biomater 74(1):429–439

    Article  CAS  Google Scholar 

  102. Bernards M, He Y (2014) Polyampholyte polymers as a versatile zwitterionic biomaterial platform. J Biomater Sci Polym Ed 25(14-15):1479–1488. doi:10.1080/09205063.2014.938976

    Article  CAS  Google Scholar 

  103. Jiang H, Xu FJ (2013) Biomolecule-functionalized polymer brushes. Chem Soc Rev 42(8):3394–3426. doi:10.1039/c2cs35453e

    Article  CAS  Google Scholar 

  104. Liao J, Wang C, Wang Y, Luo F, Qian Z (2012) Recent advances in formation, properties, and applications of polymersomes. Curr Pharm Des 18(23):3432–3441

    Article  CAS  Google Scholar 

  105. Moroni L, Klein Gunnewiek M, Benetti EM (2014) Polymer brush coatings regulating cell behavior: passive interfaces turn into active. Acta Biomater 10(6):2367–2378. doi:10.1016/j.actbio.2014.02.048

    Article  CAS  Google Scholar 

  106. Spasojevic M, Bhujbal S, Paredes G, de Haan BJ, Schouten AJ, de Vos P (2013) Considerations in binding diblock copolymers on hydrophilic alginate beads for providing an immunoprotective membrane. J Biomed Mater Res A. doi:10.1002/jbm.a.34863

    Google Scholar 

  107. Spasojevic M, Paredes-Juarez GA, Vorenkamp J, de Haan BJ, Schouten AJ, de Vos P (2014) Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers. PLoS One 9(10), e109837. doi:10.1371/journal.pone.0109837

    Article  CAS  Google Scholar 

  108. Spasojevic M, Vorenkamp J, Jansen M, de Vos P, Schouten AJ (2014) Synthesis and Phase Behavior of Poly(N-isopropylacrylamide)-b-Poly(L-Lysine Hydrochloride) and Poly(N-Isopropylacrylamide-co-Acrylamide)-b-Poly(L-Lysine Hydrochloride). Materials 7(7):5305–5326. doi:10.3390/ma7075305

    Article  CAS  Google Scholar 

  109. Orive G, Emerich D, De Vos P (2014) Encapsulate this: the do's and don'ts. Nat Med 20(3):233. doi:10.1038/nm.3486

    Article  CAS  Google Scholar 

  110. Gasparski AN, Beningo KA (2015) Mechanoreception at the cell membrane: More than the integrins. Arch Biochem Biophys. doi:10.1016/j.abb.2015.07.017

    Google Scholar 

  111. Ivanovska IL, Shin JW, Swift J, Discher DE (2015) Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 25(9):523–532. doi:10.1016/j.tcb.2015.04.003

    Article  Google Scholar 

  112. Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EH, Koenderink GH (2015) A guide to mechanobiology: Where biology and physics meet. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2015.05.007

    Google Scholar 

  113. Schaefer A, Hordijk PL (2015) Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci 128(13):2221–2230. doi:10.1242/jcs.163055

    Article  CAS  Google Scholar 

  114. Tsimbouri PM (2015) Adult stem cell responses to nanostimuli. J Funct Biomater 6(3):598–622. doi:10.3390/jfb6030598

    Article  CAS  Google Scholar 

  115. Walsh CM, Bautista DM, Lumpkin EA (2015) Mammalian touch catches up. Curr Opin Neurobiol 34:133–139. doi:10.1016/j.conb.2015.05.003

    Article  CAS  Google Scholar 

  116. Bi Y, Hubbard C, Purushotham P, Zimmer J (2015) Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr Opin Struct Biol 34:78–86. doi:10.1016/j.sbi.2015.07.008

    Article  CAS  Google Scholar 

  117. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55. doi:10.1016/j.matbio.2015.02.003

    Article  CAS  Google Scholar 

  118. Kuehn C, Vermette P, Fulop T (2014) Cross talk between the extracellular matrix and the immune system in the context of endocrine pancreatic islet transplantation. A review article. Pathol Biol 62(2):67–78. doi:10.1016/j.patbio.2014.01.001

    Article  CAS  Google Scholar 

  119. Teschler JK, Zamorano-Sanchez D, Utada AS, Warner CJ, Wong GC, Linington RG, Yildiz FH (2015) Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 13(5):255–268. doi:10.1038/nrmicro3433

    Article  CAS  Google Scholar 

  120. Dufrane D, Steenberghe M, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials 27(17):3201–3208

    Article  CAS  Google Scholar 

  121. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81(9):1345–1353

    Article  Google Scholar 

  122. Paredes-Juarez GA, Sahasrabudhe NM, Tjoelker RS, de Haan BJ, Faas MM, de Vos P (2015) Danger-associated molecular patterns production by human pancreatic islets under low oxygen and nutrient conditions in the presence and absence of an immunoisolating capsule and necrostatin-1. Sci Rep 5:14623

    Article  CAS  Google Scholar 

  123. Dempsey A, Bowie AG (2015) Innate immune recognition of DNA: a recent history. Virology 479–480:146–152. doi:10.1016/j.virol.2015.03.013

    Article  CAS  Google Scholar 

  124. Freitag J, Castro CN, Berod L, Lochner M, Sparwasser T (2015) Microbe-associated immunomodulatory metabolites: influence on T cell fate and function. Mol Immunol. doi:10.1016/j.molimm.2015.07.025

    Google Scholar 

  125. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353. doi:10.1038/ni.3123

    Article  CAS  Google Scholar 

  126. Jaeger M, Stappers MH, Joosten LA, Gyssens IC, Netea MG (2015) Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol 10(6):989–1008. doi:10.2217/fmb.15.37

    Article  CAS  Google Scholar 

  127. Sellge G, Kufer TA (2015) PRR-signaling pathways: learning from microbial tactics. Semin Immunol 27(2):75–84. doi:10.1016/j.smim.2015.03.009

    Article  CAS  Google Scholar 

  128. Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, Qi M, Kinzer KP, Oberholzer J, Calafiore R (2011) Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34(11):2406–2409. doi:10.2337/dc11-0731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PdV is grateful for financial support from the Dutch Diabetes Foundation and Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul de Vos Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Vos, P. (2017). Historical Perspectives and Current Challenges in Cell Microencapsulation. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics