Skip to main content

Roles of GRK Dysfunction in Alzheimer’s Pathogenesis

  • Protocol
  • First Online:
G Protein-Coupled Receptor Kinases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 770 Accesses

Abstract

G protein-coupled receptors (GPCRs) mediate a wide variety of physiological functions. GPCR signaling, once activated, is subsequently dampened by receptor desensitization, a procedure initiated by a group of kinases, including GPCR kinases (GRKs). GRK2 upregulation and GRK5 deficiency were reported to occur in Alzheimer’s disease. GRK2 accumulation was proposed to participate in cerebral vascular pathology, whereas GRK5 deficiency is believed to mediate the Alzheimer’s cholinergic neuronal dysfunction and degeneration via the impaired M2/M4 muscarinic receptor desensitization. The GRK dysfunction can be experimentally caused by ß-amyloid, while the subsequent cerebral vascular dysfunction and cholinergic deficiency in turn may worsen the ß-amyloidogenesis. Therefore, the GRK dysfunction appears to link the ß-amyloid accumulation to the cerebrovascular degeneration and the cholinergic degeneration in Alzheimer’s disease. Given that the ß-amyloid hypothesis, the cholinergic hypothesis, and the cerebrovascular hypothesis are all important mainstream hypotheses that are actively pursued to explain the Alzheimer’s pathogenesis, further exploration of their relations may reveal therapeutic strategies that can break their pathogenic links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36

    Article  CAS  PubMed  Google Scholar 

  2. Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jellinger KA, Bancher C (1998) Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl 54:77–95

    Article  CAS  PubMed  Google Scholar 

  4. Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson disease: comparative investigations. Alzheimer Dis Assoc Disord 4(3):133–149

    Article  CAS  PubMed  Google Scholar 

  5. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  CAS  PubMed  Google Scholar 

  6. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  7. Zatta PF (1995) Aluminum binds to the hyperphosphorylated tau in Alzheimer’s disease: a hypothesis. Med Hypotheses 44(3):169–172

    Article  CAS  PubMed  Google Scholar 

  8. Hoyer S (2000) Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Exp Gerontol 35(9-10):1363–1372

    Article  CAS  PubMed  Google Scholar 

  9. Aisen PS (1996) Inflammation and Alzheimer disease. Mol Chem Neuropathol 28(1-3):83–88

    Article  CAS  PubMed  Google Scholar 

  10. McGeer EG, McGeer PL (1999) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des 5(10):821–836

    CAS  PubMed  Google Scholar 

  11. Blennow K, Wallin A, Uhlemann C, Gottfries CG (1991) White-matter lesions on CT in Alzheimer patients: relation to clinical symptomatology and vascular factors. Acta Neurol Scand 83(3):187–193

    Article  CAS  PubMed  Google Scholar 

  12. Smith MA, Richey PL, Kalaria RN, Perry G (1996) Elastase is associated with the neurofibrillary pathology of Alzheimer disease: a putative link between proteolytic imbalance and oxidative stress. Restor Neurol Neurosci 9(4):213–217

    CAS  PubMed  Google Scholar 

  13. Pappolla MA, Sos M, Omar RA, Sambamurti K (1996) The heat shock/oxidative stress connection. Relevance to Alzheimer disease. Mol Chem Neuropathol 28(1-3):21–34

    Article  CAS  PubMed  Google Scholar 

  14. Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105(4-5):415–422

    Article  CAS  PubMed  Google Scholar 

  15. Supnet C, Bezprozvanny I (2010) The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 47(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sallese M, Mariggio S, Collodel G, Moretti E, Piomboni P, Baccetti B, De Blasi A (1997) G protein-coupled receptor kinase GRK4. Molecular analysis of the four isoforms and ultrastructural localization in spermatozoa and germinal cells. J Biol Chem 272(15):10188–10195

    Article  CAS  PubMed  Google Scholar 

  17. Virlon B, Firsov D, Cheval L, Reiter E, Troispoux C, Guillou F, Elalouf JM (1998) Rat G protein-coupled receptor kinase GRK4: identification, functional expression, and differential tissue distribution of two splice variants. Endocrinology 139(6):2784–2795

    CAS  PubMed  Google Scholar 

  18. Sallese M, Salvatore L, D’Urbano E, Sala G, Storto M, Launey T, Nicoletti F, Knopfel T, De Blasi A (2000) The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J 14(15):2569–2580

    Article  CAS  PubMed  Google Scholar 

  19. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  20. Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63(1):9–18

    Article  CAS  PubMed  Google Scholar 

  21. Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768(4):913–922

    Article  CAS  PubMed  Google Scholar 

  22. Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165

    Article  CAS  PubMed  Google Scholar 

  23. Kunapuli P, Benovic JL (1993) Cloning and expression of GRK5: a member of the G protein-coupled receptor kinase family. Proc Natl Acad Sci U S A 90(12):5588–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ (1994) Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem 269(9):6832–6841

    CAS  PubMed  Google Scholar 

  25. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ (1993) Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268(32):23735–23738

    CAS  PubMed  Google Scholar 

  26. Erdtmann-Vourliotis M, Mayer P, Ammon S, Riechert U, Hollt V (2001) Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain. Brain Res Mol Brain Res 95(1-2):129–137

    Article  CAS  PubMed  Google Scholar 

  27. Wu CC, Tsai FM, Shyu RY, Tsai YM, Wang CH, Jiang SY (2011) G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 11:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu P, Wang X, Gao N, Zhu H, Dai X, Xu Y, Ma C, Huang L, Liu Y, Qin C (2010) G protein-coupled receptor kinase 5, overexpressed in the alpha-synuclein up-regulation model of Parkinson’s disease, regulates bcl-2 expression. Brain Res 1307:134–141

    Article  CAS  PubMed  Google Scholar 

  29. Ahn MJ, Lee KH, Ahn JI, Yu DH, Lee HS, Choi JH, Jang JS, Bae JM, Lee YS (2004) The differential gene expression profiles between sensitive and resistant breast cancer cells to adriamycin by cDNA microarray. Cancer Res Treat 36(1):43–49

    Article  PubMed  PubMed Central  Google Scholar 

  30. Penela P, Barradas M, Alvarez-Dolado M, Munoz A, Mayor F Jr (2001) Effect of hypothyroidism on G protein-coupled receptor kinase 2 expression levels in rat liver, lung, and heart. Endocrinology 142(3):987–991

    CAS  PubMed  Google Scholar 

  31. Ishizaka N, Alexander RW, Laursen JB, Kai H, Fukui T, Oppermann M, Lefkowitz RJ, Lyons PR, Griendling KK (1997) G protein-coupled receptor kinase 5 in cultured vascular smooth muscle cells and rat aorta. Regulation by angiotensin II and hypertension. J Biol Chem 272(51):32482–32488

    Article  CAS  PubMed  Google Scholar 

  32. Fan J, Malik AB (2003) Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nat Med 9(3):315–321

    Article  CAS  PubMed  Google Scholar 

  33. Benovic JL, DeBlasi A, Stone WC, Caron MG, Lefkowitz RJ (1989) Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science 246(4927):235–240

    Article  CAS  PubMed  Google Scholar 

  34. Rengo G, Lymperopoulos A, Leosco D, Koch WJ (2011) GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 50(5):785–792

    Article  CAS  PubMed  Google Scholar 

  35. Brinks H, Das A, Koch WJ (2011) A role for GRK2 in myocardial ischemic injury: indicators of a potential future therapy and diagnostic. Future Cardiol 7(4):547–556

    Article  CAS  PubMed  Google Scholar 

  36. Reinkober J, Tscheschner H, Pleger ST, Most P, Katus HA, Koch WJ, Raake PW (2012) Targeting GRK2 by gene therapy for heart failure: benefits above beta-blockade. Gene Ther 19(6):686–693

    Article  CAS  PubMed  Google Scholar 

  37. Cannavo A, Liccardo D, Koch WJ (2013) Targeting cardiac beta-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 4:264

    Article  PubMed  PubMed Central  Google Scholar 

  38. Feldman RD (2002) Deactivation of vasodilator responses by GRK2 overexpression: a mechanism or the mechanism for hypertension? Mol Pharmacol 61(4):707–709

    Article  CAS  PubMed  Google Scholar 

  39. Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC (2005) A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 11(9):952–958

    Article  CAS  PubMed  Google Scholar 

  40. Semela D, Langer DA, Shah V (2006) GRK2 makes trouble: a no-NO in portal hypertension. Gastroenterology 130(3):1001–1003

    Article  PubMed  Google Scholar 

  41. Xing W, Li Y, Zhang H, Mi C, Hou Z, Quon MJ, Gao F (2013) Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Am J Physiol 305(8):H1111–1119

    CAS  Google Scholar 

  42. Avendano MS, Lucas E, Jurado-Pueyo M, Martinez-Revelles S, Vila-Bedmar R, Mayor F Jr, Salaices M, Briones AM, Murga C (2014) Increased nitric oxide bioavailability in adult GRK2 hemizygous mice protects against angiotensin II-induced hypertension. Hypertension 63(2):369–375

    Article  CAS  PubMed  Google Scholar 

  43. Tutunea-Fatan E, Caetano FA, Gros R, Ferguson SS (2015) GRK2 targeted knock-down results in spontaneous hypertension, and altered vascular GPCR signaling. J Biol Chem 290(8):5141–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nijboer CH, Kavelaars A, Vroon A, Groenendaal F, van Bel F, Heijnen CJ (2008) Low endogenous G-protein-coupled receptor kinase 2 sensitizes the immature brain to hypoxia-ischemia-induced gray and white matter damage. J Neurosci 28(13):3324–3332

    Article  CAS  PubMed  Google Scholar 

  45. Lombardi MS, van den Tweel E, Kavelaars A, Groenendaal F, van Bel F, Heijnen CJ (2004) Hypoxia/ischemia modulates G protein-coupled receptor kinase 2 and beta-arrestin-1 levels in the neonatal rat brain. Stroke 35(4):981–986

    Article  CAS  PubMed  Google Scholar 

  46. Penela P, Murga C, Ribas C, Salcedo A, Jurado-Pueyo M, Rivas V, Aymerich I, Mayor F Jr (2008) G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch Physiol Biochem 114(3):195–200

    Article  CAS  PubMed  Google Scholar 

  47. Zhang C, Wang ZJ, Lok KH, Yin M (2012) beta-amyloid42 induces desensitization of CXC chemokine receptor-4 via formyl peptide receptor in neural stem/progenitor cells. Biol Pharm Bull 35(2):131–138

    Article  CAS  PubMed  Google Scholar 

  48. Ozaita A, Escriba PV, Ventayol P, Murga C, Mayor F Jr, Garcia-Sevilla JA (1998) Regulation of G protein-coupled receptor kinase 2 in brains of opiate-treated rats and human opiate addicts. J Neurochem 70(3):1249–1257

    Article  CAS  PubMed  Google Scholar 

  49. Bailey CP, Oldfield S, Llorente J, Caunt CJ, Teschemacher AG, Roberts L, McArdle CA, Smith FL, Dewey WL, Kelly E, Henderson G (2009) Involvement of PKC alpha and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of mu-opioid receptors in mature brain neurons. Br J Pharmacol 158(1):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT (2011) Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone. J Neurosci 31(12):4434–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Llorente J, Lowe JD, Sanderson HS, Tsisanova E, Kelly E, Henderson G, Bailey CP (2012) mu-Opioid receptor desensitization: homologous or heterologous? Eur J Neurosci 36(12):3636–3642

    Article  PubMed  PubMed Central  Google Scholar 

  52. Doll C, Poll F, Peuker K, Loktev A, Gluck L, Schulz S (2012) Deciphering micro-opioid receptor phosphorylation and dephosphorylation in HEK293 cells. Br J Pharmacol 167(6):1259–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Daigle TL, Caron MG (2012) Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation. J Neurosci 32(33):11461–11466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alvaro-Bartolome M, Garcia-Sevilla JA (2013) Dysregulation of cannabinoid CB1 receptor and associated signaling networks in brains of cocaine addicts and cocaine-treated rodents. Neuroscience 247:294–308

    Article  CAS  PubMed  Google Scholar 

  55. Nimitvilai S, McElvain MA, Brodie MS (2013) Reversal of dopamine D2 agonist-induced inhibition of ventral tegmental area neurons by Gq-linked neurotransmitters is dependent on protein kinase C, G protein-coupled receptor kinase, and dynamin. J Pharmacol Exp Ther 344(1):253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lowe JD, Sanderson HS, Cooke AE, Ostovar M, Tsisanova E, Withey SL, Chavkin C, Husbands SM, Kelly E, Henderson G, Bailey CP (2015) Role of G protein-coupled receptor kinases 2 and 3 in mu-opioid receptor desensitization and internalization. Mol Pharmacol 88(2):347–356

    Article  CAS  PubMed  Google Scholar 

  57. Keys JR, Zhou RH, Harris DM, Druckman CA, Eckhart AD (2005) Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on Gi-mediated signaling. Circulation 112(8):1145–1153

    Article  CAS  PubMed  Google Scholar 

  58. Rockman HA, Choi DJ, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ (1996) Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci U S A 93(18):9954–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M (1999) A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401(6750):286–290

    Article  CAS  PubMed  Google Scholar 

  60. Iwata M, Yoshikawa T, Baba A, Anzai T, Nakamura I, Wainai Y, Takahashi T, Ogawa S (2001) Autoimmunity against the second extracellular loop of beta(1)-adrenergic receptors induces beta-adrenergic receptor desensitization and myocardial hypertrophy in vivo. Circ Res 88(6):578–586

    Article  CAS  PubMed  Google Scholar 

  61. Hu LA, Chen W, Premont RT, Cong M, Lefkowitz RJ (2002) G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95. J Biol Chem 277(2):1607–1613

    Article  CAS  PubMed  Google Scholar 

  62. Pei G, Kieffer BL, Lefkowitz RJ, Freedman NJ (1995) Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48(2):173–177

    CAS  PubMed  Google Scholar 

  63. Gainetdinov RR, Bohn LM, Walker JK, Laporte SA, Macrae AD, Caron MG, Lefkowitz RJ, Premont RT (1999) Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 24(4):1029–1036

    Article  CAS  PubMed  Google Scholar 

  64. Walker JK, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG, Lefkowitz RJ, Premont RT, Fisher JT (2004) G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell Mol Physiol 286(2):L312–319

    Article  CAS  PubMed  Google Scholar 

  65. Suo Z, Wu M, Citron BA, Wong GT, Festoff BW (2004) Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer’s disease: an association with early beta-amyloid accumulation. J Neurosci 24(13):3444–3452

    Article  CAS  PubMed  Google Scholar 

  66. Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 28(12):1873–1888

    Article  CAS  PubMed  Google Scholar 

  67. Liu J, Rasul I, Sun Y, Wu G, Li L, Premont RT, Suo WZ (2009) GRK5 deficiency leads to reduced hippocampal acetylcholine level via impaired presynaptic M2/M4 autoreceptor desensitization. J Biol Chem 284(29):19564–19571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng S, Li L, He S, Liu J, Sun Y, He M, Grasing K, Premont RT, Suo WZ (2010) GRK5 deficiency accelerates {beta}-amyloid accumulation in Tg2576 mice via impaired cholinergic activity. J Biol Chem 285(53):41541–41548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arawaka S, Wada M, Goto S, Karube H, Sakamoto M, Ren CH, Koyama S, Nagasawa H, Kimura H, Kawanami T, Kurita K, Tajima K, Daimon M, Baba M, Kido T, Saino S, Goto K, Asao H, Kitanaka C, Takashita E, Hongo S, Nakamura T, Kayama T, Suzuki Y, Kobayashi K, Katagiri T, Kurokawa K, Kurimura M, Toyoshima I, Niizato K, Tsuchiya K, Iwatsubo T, Muramatsu M, Matsumine H, Kato T (2006) The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson’s disease. J Neurosci 26(36):9227–9238

    Article  CAS  PubMed  Google Scholar 

  70. Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275(34):26515–26522

    Article  CAS  PubMed  Google Scholar 

  71. Carman CV, Som T, Kim CM, Benovic JL (1998) Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J Biol Chem 273(32):20308–20316

    Article  CAS  PubMed  Google Scholar 

  72. Chen X, Zhu H, Yuan M, Fu J, Zhou Y, Ma L (2010) G-protein-coupled receptor kinase 5 phosphorylates p53 and inhibits DNA damage-induced apoptosis. J Biol Chem 285(17):12823–12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sorriento D, Ciccarelli M, Santulli G, Campanile A, Altobelli GG, Cimini V, Galasso G, Astone D, Piscione F, Pastore L, Trimarco B, Iaccarino G (2008) The G-protein-coupled receptor kinase 5 inhibits NFkappaB transcriptional activity by inducing nuclear accumulation of IkappaB alpha. Proc Natl Acad Sci U S A 105(46):17818–17823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sorriento D, Campanile A, Santulli G, Leggiero E, Pastore L, Trimarco B, Iaccarino G (2009) A new synthetic protein, TAT-RH, inhibits tumor growth through the regulation of NFkappaB activity. Mol Cancer 8:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhou RH, Pesant S, Cohn HI, Soltys S, Koch WJ, Eckhart AD (2009) Negative regulation of VEGF signaling in human coronary artery endothelial cells by G protein-coupled receptor kinase 5. Clin Transl Sci 2(1):57–61

    Article  PubMed  Google Scholar 

  76. Johnson LR, Scott MG, Pitcher JA (2004) G protein-coupled receptor kinase 5 contains a DNA-binding nuclear localization sequence. Mol Cell Biol 24(23):10169–10179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Obrenovich ME, Smith MA, Siedlak SL, Chen SG, de la Torre JC, Perry G, Aliev G (2006) Overexpression of GRK2 in Alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotox Res 10(1):43–56

    Article  CAS  PubMed  Google Scholar 

  78. Leosco D, Fortunato F, Rengo G, Iaccarino G, Sanzari E, Golino L, Zincarelli C, Canonico V, Marchese M, Koch WJ, Rengo F (2007) Lymphocyte G-protein-coupled receptor kinase-2 is upregulated in patients with Alzheimer’s disease. Neurosci Lett 415(3):279–282

    Article  CAS  PubMed  Google Scholar 

  79. Zhu X, Smith MA, Honda K, Aliev G, Moreira PI, Nunomura A, Casadesus G, Harris PL, Siedlak SL, Perry G (2007) Vascular oxidative stress in Alzheimer disease. J Neurol Sci 257(1-2):240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Correia SC, Santos RX, Cardoso S, Carvalho C, Candeias E, Duarte AI, Placido AI, Santos MS, Moreira PI (2012) Alzheimer disease as a vascular disorder: where do mitochondria fit? Exp Gerontol 47(11):878–886

    Article  CAS  PubMed  Google Scholar 

  81. Diomedi M, Misaggi G (2013) Vascular contribution to Alzheimer disease: predictors of rapid progression. CNS Neurol Disord Drug Targets 12(4):532–537

    Article  CAS  PubMed  Google Scholar 

  82. Takeda S, Sato N, Morishita R (2014) Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci 6:171

    PubMed  PubMed Central  Google Scholar 

  83. Obrenovich ME, Morales LA, Cobb CJ, Shenk JC, Mendez GM, Fischbach K, Smith MA, Qasimov EK, Perry G, Aliev G (2009) Insights into cerebrovascular complications and Alzheimer disease through the selective loss of GRK2 regulation. J Cell Mol Med 13(5):853–865

    Article  CAS  PubMed  Google Scholar 

  84. Wu JH, Goswami R, Cai X, Exum ST, Huang X, Zhang L, Brian L, Premont RT, Peppel K, Freedman NJ (2006) Regulation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-5 in vascular smooth muscle cells involves the phosphatase Shp2. J Biol Chem 281(49):37758–37772

    Article  CAS  PubMed  Google Scholar 

  85. Luo X, Ding L, Xu J, Williams RS, Chegini N (2005) Leiomyoma and myometrial gene expression profiles and their responses to gonadotropin-releasing hormone analog therapy. Endocrinology 146(3):1074–1096

    Article  CAS  PubMed  Google Scholar 

  86. Nagayama Y, Tanaka K, Namba H, Yamashita S, Niwa M (1996) Expression and regulation of G protein-coupled receptor kinase 5 and beta-arrestin-1 in rat thyroid FRTL5 cells. Thyroid 6(6):627–631

    Article  CAS  PubMed  Google Scholar 

  87. Fan X, Zhang J, Zhang X, Yue W, Ma L (2002) Acute and chronic morphine treatments and morphine withdrawal differentially regulate GRK2 and GRK5 gene expression in rat brain. Neuropharmacology 43(5):809–816

    Article  CAS  PubMed  Google Scholar 

  88. Suo WZ, Li L (2010) Dysfunction of G protein-coupled receptor kinases in Alzheimer’s disease. ScientificWorldJournal 10:1667–1678

    Article  CAS  PubMed  Google Scholar 

  89. Pitcher JA, Fredericks ZL, Stone WC, Premont RT, Stoffel RH, Koch WJ, Lefkowitz RJ (1996) Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J Biol Chem 271(40):24907–24913

    Article  CAS  PubMed  Google Scholar 

  90. Pronin AN, Satpaev DK, Slepak VZ, Benovic JL (1997) Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J Biol Chem 272(29):18273–18280

    Article  CAS  PubMed  Google Scholar 

  91. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 93(23):12974–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, Lefkowitz RJ (1997) G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J Biol Chem 272(41):25425–25428

    Article  CAS  PubMed  Google Scholar 

  93. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG, Premont RT (2003) Dopaminergic supersensitivity in g protein-coupled receptor kinase 6-deficient mice. Neuron 38(2):291–303

    Article  CAS  PubMed  Google Scholar 

  94. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75(25):2971–2981

    Article  CAS  PubMed  Google Scholar 

  95. Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  CAS  PubMed  Google Scholar 

  96. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    Article  CAS  PubMed  Google Scholar 

  97. Li L, Liu J, Suo WZ (2008) GRK5 deficiency exaggerates inflammatory changes in TgAPPsw mice. J Neuroinflammation 5:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM (2001) Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 21(2):RC123

    CAS  PubMed  Google Scholar 

  99. Yazawa H, Yu ZX, Le Takeda Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 15(13):2454–2462

    Article  CAS  PubMed  Google Scholar 

  100. Langkabel P, Zwirner J, Oppermann M (1999) Ligand-induced phosphorylation of anaphylatoxin receptors C3aR and C5aR is mediated by ″G protein-coupled receptor kinases. Eur J Immunol 29(9):3035–3046

    Article  CAS  PubMed  Google Scholar 

  101. Streit WJ, Conde JR, Harrison JK (2001) Chemokines and Alzheimer’s disease. Neurobiol Aging 22(6):909–913

    Article  CAS  PubMed  Google Scholar 

  102. Suo WZ (2013) Accelerating Alzheimer’s pathogenesis by GRK5 deficiency via cholinergic dysfunction. Adv Alzheimers Dis 2:148–160

    Article  CAS  Google Scholar 

  103. Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci U S A 93(24):13541–13546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22(5):1709–1717

    CAS  PubMed  Google Scholar 

  105. Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 56(5):541–569

    Article  CAS  PubMed  Google Scholar 

  106. DeLapp N, Wu S, Belagaje R, Johnstone E, Little S, Shannon H, Bymaster F, Calligaro D, Mitch C, Whitesitt C, Ward J, Sheardown M, Fink-Jensen A, Jeppesen L, Thomsen C, Sauerberg P (1998) Effects of the M1 agonist xanomeline on processing of human beta-amyloid precursor protein (FAD, Swedish mutant) transfected into Chinese hamster ovary-m1 cells. Biochem Biophys Res Commun 244(1):156–160

    Article  CAS  PubMed  Google Scholar 

  107. Lin L, Georgievska B, Mattsson A, Isacson O (1999) Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc Natl Acad Sci U S A 96(21):12108–12113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fisher A, Pittel Z, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch I, Brandeis R (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 20(3):349–356

    Article  CAS  PubMed  Google Scholar 

  109. Liskowsky W, Schliebs R (2006) Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci 24(2-3):149–156

    Article  CAS  PubMed  Google Scholar 

  110. Budd DC, McDonald J, Emsley N, Cain K, Tobin AB (2003) The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 278(21):19565–19573

    Article  CAS  PubMed  Google Scholar 

  111. Postina R (2008) A closer look at alpha-secretase. Curr Alzheimer Res 5(2):179–186

    Article  CAS  PubMed  Google Scholar 

  112. Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A (1996) Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 66(2):877–880

    Article  CAS  PubMed  Google Scholar 

  113. Pemberton KE, Hill-Eubanks LJ, Jones SV (2000) Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3 T3 cells. Pflugers Arch 440(3):452–461

    Article  CAS  PubMed  Google Scholar 

  114. Crespo P, Xu N, Simonds WF, Gutkind JS (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 369(6479):418–420

    Article  CAS  PubMed  Google Scholar 

  115. Kim SS, Choi JM, Kim JW, Ham DS, Ghil SH, Kim MK, Kim-Kwon Y, Hong SY, Ahn SC, Kim SU, Lee YD, Suh-Kim H (2005) cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. Neuroreport 16(12):1357–1361

    Article  CAS  PubMed  Google Scholar 

  116. Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A (2005) Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 16(12):5639–5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Malbon CC, Tao J, Wang HY (2004) AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 379(Pt 1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84(1):137–167

    Article  CAS  PubMed  Google Scholar 

  119. Dumaz N, Marais R (2005) Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 272(14):3491–3504

    Article  CAS  PubMed  Google Scholar 

  120. Chin PC, Majdzadeh N, D’Mello SR (2005) Inhibition of GSK3beta is a common event in neuroprotection by different survival factors. Brain Res Mol Brain Res 137(1-2):193–201

    Article  CAS  PubMed  Google Scholar 

  121. Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 97(22):11960–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC 3rd (2008) A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol 295(3):C836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL, Wofford JA, Dimascio LN, Ilkayeva O, Kelekar A, Reya T, Rathmell JC (2007) Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 27(12):4328–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev 11(8):539–551

    Article  CAS  Google Scholar 

  125. Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem (Tokyo) 121(2):179–188

    CAS  Google Scholar 

  126. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109(1):5–13

    Article  PubMed  Google Scholar 

  127. Trojanowski JQ, Lee VM (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. FASEB J 9(15):1570–1576

    CAS  PubMed  Google Scholar 

  128. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21(3):281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713):1282–1288

    Article  CAS  PubMed  Google Scholar 

  130. Suo WZ, Cheng S, He M (2012) Accelerating Alzheimer’s pathogenesis by GRK5 deficiency via cholinergic dysfunction. Alzheimers Dement 2:646

    Article  Google Scholar 

  131. Thathiah A, De Strooper B (2009) G protein-coupled receptors, cholinergic dysfunction, and Abeta toxicity in Alzheimer’s disease. Sci Signal 2(93):re8

    Article  PubMed  Google Scholar 

  132. Bartus RT, Dean RL, Pontecorvo MJ, Flicker C (1985) The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann N Y Acad Sci 444:332–358

    Article  CAS  PubMed  Google Scholar 

  133. Woolf NJ (1996) The critical role of cholinergic basal forebrain neurons in morphological change and memory encoding: a hypothesis. Neurobiol Learn Mem 66(3):258–266

    Article  CAS  PubMed  Google Scholar 

  134. Ladner CJ, Lee JM (1998) Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol 57(8):719–731

    Article  CAS  PubMed  Google Scholar 

  135. Fisher A (2008) Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5(3):433–442

    Article  CAS  PubMed  Google Scholar 

  136. Small DH, Cappai R (2006) Alois Alzheimer and Alzheimer’s disease: a centennial perspective. J Neurochem 99(3):708–710

    Article  CAS  PubMed  Google Scholar 

  137. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281(15):1401–1406

    Article  CAS  PubMed  Google Scholar 

  139. Bartus RT, Emerich DF (1999) Cholinergic markers in Alzheimer disease. JAMA 282(23):2208–2209

    Article  CAS  PubMed  Google Scholar 

  140. Kara E, Crepieux P, Gauthier C, Martinat N, Piketty V, Guillou F, Reiter E (2006) A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Mol Endocrinol 20(11):3014–3026

    Article  CAS  PubMed  Google Scholar 

  141. Warabi K, Richardson MD, Barry WT, Yamaguchi K, Roush ED, Nishimura K, Kwatra MM (2002) Human substance P receptor undergoes agonist-dependent phosphorylation by G protein-coupled receptor kinase 5 in vitro. FEBS Lett 521(1-3):140–144

    Article  CAS  PubMed  Google Scholar 

  142. Tiruppathi C, Yan W, Sandoval R, Naqvi T, Pronin AN, Benovic JL, Malik AB (2000) G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells. Proc Natl Acad Sci U S A 97(13):7440–7445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nagayama Y, Tanaka K, Hara T, Namba H, Yamashita S, Taniyama K, Niwa M (1996) Involvement of G protein-coupled receptor kinase 5 in homologous desensitization of the thyrotropin receptor. J Biol Chem 271(17):10143–10148

    Article  CAS  PubMed  Google Scholar 

  144. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, Gao E, Eckhart AD, Pitcher JA, Koch WJ (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 105(34):12457–12462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Barker BL, Benovic JL (2011) G protein-coupled receptor kinase 5 phosphorylation of hip regulates internalization of the chemokine receptor CXCR4. Biochemistry 50(32):6933–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Parameswaran N, Pao CS, Leonhard KS, Kang DS, Kratz M, Ley SC, Benovic JL (2006) Arrestin-2 and G protein-coupled receptor kinase 5 interact with NFkappaB1 p105 and negatively regulate lipopolysaccharide-stimulated ERK1/2 activation in macrophages. J Biol Chem 281(45):34159–34170

    Article  CAS  PubMed  Google Scholar 

  147. Patial S, Shahi S, Saini Y, Lee T, Packiriswamy N, Appledorn DM, Lapres JJ, Amalfitano A, Parameswaran N (2011) G-protein coupled receptor kinase 5 mediates lipopolysaccharide-induced NFkappaB activation in primary macrophages and modulates inflammation in vivo in mice. J Cell Physiol 226(5):1323–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cai X, Wu JH, Exum ST, Oppermann M, Premont RT, Shenoy SK, Freedman NJ (2009) Reciprocal regulation of the platelet-derived growth factor receptor-beta and G protein-coupled receptor kinase 5 by cross-phosphorylation: effects on catalysis. Mol Pharmacol 75(3):626–636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants to W.Z.S. from the Medical Research and Development Service, Department of Veterans Affairs, the Alzheimer’s Association, and resources from the Midwest Biomedical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Z. Suo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suo, W.Z. (2016). Roles of GRK Dysfunction in Alzheimer’s Pathogenesis. In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics