Skip to main content

Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5)

  • Protocol
  • First Online:
Histone Deacetylases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1436))

Abstract

As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear–cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24(19):8374–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang Y, Tan M, Gosink M, Wang KK, Sun Y (2002) Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis. Cancer Res 62(10):2913–2922

    CAS  PubMed  Google Scholar 

  4. Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL (2004) Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78(13):6744–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Renthal W, Maze I, Krishnan V, Covington HE 3rd, Xiao G, Kumar A, Russo SJ, Graham A, Tsankova N, Kippin TE, Kerstetter KA, Neve RL, Haggarty SJ, McKinsey TA, Bassel-Duby R, Olson EN, Nestler EJ (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529

    Article  CAS  PubMed  Google Scholar 

  6. Dietrich JB, Takemori H, Grosch-Dirrig S, Bertorello A, Zwiller J (2012) Cocaine induces the expression of MEF2C transcription factor in rat striatum through activation of SIK1 and phosphorylation of the histone deacetylase HDAC5. Synapse 66(1):61–70. doi:10.1002/syn.20988

    Article  CAS  PubMed  Google Scholar 

  7. Taniguchi M, Carreira MB, Smith LN, Zirlin BC, Neve RL, Cowan CW (2012) Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import. Neuron 73(1):108–120. doi:10.1016/j.neuron.2011.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfi A, Koch U, De Francesco R, Steinkuhler C, Gallinari P (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 104(44):17335–17340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9(1):45–57

    Article  CAS  PubMed  Google Scholar 

  10. Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, Cristea IM (2013) The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9:672. doi:10.1038/msb.2013.26

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem 275(20):15594–15599

    Article  CAS  PubMed  Google Scholar 

  12. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79(3):243–252

    Article  CAS  PubMed  Google Scholar 

  13. Verdel A, Khochbin S (1999) Identification of a new family of higher eukaryotic histone deacetylases – coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 274(4):2440–2445

    Article  CAS  PubMed  Google Scholar 

  14. Downes M, Ordentlich P, Kao HY, Alvarez JG, Evans RM (2000) Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci U S A 97(19):10330–10335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKinsey TA, Zhang CL, Olson EN (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21(18):6312–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greco TM, Yu F, Guise AJ, Cristea IM (2011) Nuclear Import of Histone Deacetylase 5 by Requisite Nuclear Localization Signal Phosphorylation. Molecular & Cellular Proteomics 10 (2). doi: 10.1074/mcp.M110.004317

    Google Scholar 

  17. Borghi S, Molinari S, Razzini G, Parise F, Battini R, Ferrari S (2001) The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4. J Cell Sci 114(Pt 24):4477–4483

    CAS  PubMed  Google Scholar 

  18. Zhang CL, McKinsey TA, Lu JR, Olson EN (2001) Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 276(1):35–39

    Article  CAS  PubMed  Google Scholar 

  19. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison BC, Kim MS, van Rooij E, Plato CF, Papst PJ, Vega RB, McAnally JA, Richardson JA, Bassel-Duby R, Olson EN, McKinsey TA (2006) Regulation of cardiac stress signaling by protein kinase D1. Mol Cell Biol 26(10):3875–3888. doi:10.1128/mcb.26.10.3875-3888.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huynh QK, McKinsey TA (2006) Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Arch Biochem Biophys 450(2):141–148

    Article  CAS  PubMed  Google Scholar 

  22. Matthews SA, Liu P, Spitaler M, Olson EN, McKinsey TA, Cantrell DA, Scharenberg AM (2006) Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol 26(4):1569–1577. doi:10.1128/MCB.26.4.1569-1577.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sucharov CC, Langer S, Bristow M, Leinwand L (2006) Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. Am J Physiol Cell Physiol 291(5):C1029–C1037

    Article  CAS  PubMed  Google Scholar 

  24. Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN (2008) Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol 28(10):3437–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ha CH, Wang W, Jhun BS, Wong C, Hausser A, Pfizenmaier K, McKinsey TA, Olson EN, Jin ZG (2008) Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J Biol Chem 283(21):14590–14599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106(7):2342–2347. doi:10.1073/pnas.0813013106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Contreras M, Shen T, Randall WR, Schneider MF (2009) Alpha-adrenergic signalling activates protein kinase D and causes nuclear efflux of the transcriptional repressor HDAC5 in cultured adult mouse soleus skeletal muscle fibres. J Physiol 587(Pt 5):1101–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng Y, Lambert AA, Papst P, Pitts KR (2009) Agonist-induced nuclear export of GFP-HDAC5 in isolated adult rat ventricular myocytes. J Pharmacol Toxicol Methods 59(3):135–140

    Article  CAS  PubMed  Google Scholar 

  29. Ha CH, Kim JY, Zhao JJ, Wang WY, Jhun BS, Wong C, Jin ZG (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 107(35):15467–15472. doi:10.1073/pnas.1000462107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guise AJ, Greco TM, Zhang IY, Yu F, Cristea IM (2012) Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation. Mol Cell Proteomics 11(11):1220–1229. doi:10.1074/mcp.M112.021030, Pii: M112.021030

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berger I, Bieniossek C, Schaffitzel C, Hassler M, Santelli E, Richmond TJ (2003) Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2. J Biol Chem 278(20):17625–17635

    Article  CAS  PubMed  Google Scholar 

  32. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133(6):978–993

    Article  CAS  PubMed  Google Scholar 

  33. Calalb MB, McKinsey TA, Newkirk S, Huynh K, Sucharov CC, Bristow MR (2009) Increased phosphorylation-dependent nuclear export of class ii histone deacetylases in failing human heart. Clin Transl Sci 2(5):325–332. doi:10.1111/j.1752-8062.2009.00141.x

    Article  CAS  PubMed  Google Scholar 

  34. McKinsey TA, Zhang CL, Olson EN (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97(26):14400–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guise AJ, Mathias RA, Rowland EA, Yu F, Cristea IM (2014) Probing phosphorylation-dependent protein interactions within functional domains of histone deacetylase 5 (HDAC5). Proteomics 14(19):2156–2166. doi:10.1002/pmic.201400092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Jin M, Margariti A, Wang G, Luo Z, Zampetaki A, Zeng L, Ye S, Zhu J, Xiao Q (2010) Sp1-dependent activation of HDAC7 is required for platelet-derived growth factor-BB-induced smooth muscle cell differentiation from stem cells. J Biol Chem 285(49):38463–38472. doi:10.1074/jbc.M110.153999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145(4):607–621. doi:10.1016/j.cell.2011.03.043

    Article  CAS  PubMed  Google Scholar 

  38. Cho Y, Cavalli V (2012) HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J 31(14):3063–3078. doi:10.1038/emboj.2012.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mathias R, Greco T, Oberstein A, Budayeva H, Chakrabarti R, Rowland E, Kang Y, Shenk T, Cristea I (2014) Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159(7):10. doi:10.1016/j.cell.2014.11.046

    Article  Google Scholar 

  40. Chini CC, Escande C, Nin V, Chini EN (2010) HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem 285(52):40830–40837. doi:10.1074/jbc.M110.153270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cristea IM, Williams R, Chait BT, Rout MP (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4(12):1933–1941. doi:10.1074/mcp.M500227-MCP200

    Article  CAS  PubMed  Google Scholar 

  42. Barrow KM, Perez-Campo FM, Ward CM (2006) Use of the cytomegalovirus promoter for transient and stable transgene expression in mouse embryonic stem cells. Methods Mol Biol 329:283–294. doi:10.1385/1-59745-037-5:283

    CAS  PubMed  Google Scholar 

  43. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611. doi:10.1371/journal.pone.0010611

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fakhrai H, Shawler DL, Van Beveren C, Lin H, Dorigo O, Solomon MJ, Gjerset RA, Smith L, Bartholomew RM, Boggiano CA, Gold DP, Sobol RE (1997) Construction and characterization of retroviral vectors for interleukin-2 gene therapy. J Immunother 20(6):437–448

    Article  CAS  PubMed  Google Scholar 

  45. Bebenek K, Abbotts J, Wilson SH, Kunkel TA (1993) Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem 268(14):10324–10334

    CAS  PubMed  Google Scholar 

  46. Hsia SC, Shi YB (2002) Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor. Mol Cell Biol 22(12):4043–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM (2012) Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 11(2):M111 015156. doi:10.1074/mcp.M111.015156

    Article  PubMed  Google Scholar 

  48. Greco TM, Guise AJ, Cristea IM. (2016) Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy. Methods Mol Biol. 1410:39-63. doi:10.1007/978-1-4939-3524-6_3

    Google Scholar 

  49. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–360. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  50. Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8(12):5674–5678. doi:10.1021/pr900748n

    Article  CAS  PubMed  Google Scholar 

  51. WHO/UNAIDS (2013) UNAIDS report on the Global AIDS Epidemic. UNAIDS. Global Report. WHO

    Google Scholar 

  52. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  53. Shaw PG, Chaerkady R, Zhang Z, Davidson NE, Pandey A (2011) Monoclonal antibody cocktail as an enrichment tool for acetylome analysis. Anal Chem 83(10):3623–3626. doi:10.1021/ac1026176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA (2015) Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics. doi:10.1074/mcp.O114.047555

    PubMed  Google Scholar 

  55. van der Mijn JC, Labots M, Piersma SR, Pham TV, Knol JC, Broxterman HJ, Verheul HM, Jimenez CR (2015) Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics. J Proteome. doi:10.1016/j.jprot.2015.04.006

    Google Scholar 

  56. Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935. doi:10.1038/nprot.2006.185

    Article  CAS  PubMed  Google Scholar 

  57. Engholm-Keller K, Birck P, Storling J, Pociot F, Mandrup-Poulsen T, Larsen MR (2012) TiSH – a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteome 75(18):5749–5761. doi:10.1016/j.jprot.2012.08.007

    Article  CAS  Google Scholar 

  58. Di Palma S, Zoumaro-Djayoon A, Peng M, Post H, Preisinger C, Munoz J, Heck AJ (2013) Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography. J Proteome 91:331–337. doi:10.1016/j.jprot.2013.07.024

    Article  Google Scholar 

  59. Melo-Braga MN, Ibanez-Vea M, Larsen MR, Kulej K (2015) Comprehensive protocol to simultaneously study protein phosphorylation, acetylation, and N-linked sialylated glycosylation. Methods Mol Biol 1295:275–292. doi:10.1007/978-1-4939-2550-6_21

    Article  CAS  PubMed  Google Scholar 

  60. Grozinger CM, Schreiber SL (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A 97(14):7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkuhler C, Di Marco S (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 101(42):15064–15069. doi:10.1073/pnas.0404603101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen TK, Hildmann C, Dickmanns A, Schwienhorst A, Ficner R (2005) Crystal structure of a bacterial class 2 histone deacetylase homologue. J Mol Biol 354(1):107–120. doi:10.1016/j.jmb.2005.09.065

    Article  CAS  PubMed  Google Scholar 

  63. Bottomley MJ, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, Jones P, Neddermann P, De Francesco R, Steinkuhler C, Gallinari P, Carfi A (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283(39):26694–26704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi:10.1186/1471-2105-9-40

    Article  PubMed  PubMed Central  Google Scholar 

  65. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. doi:10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8. doi:10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huynh QK (2011) Evidence for the phosphorylation of serine259 of histone deacetylase 5 by protein kinase Cdelta. Arch Biochem Biophys 506(2):173–180. doi:10.1016/j.abb.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  68. Mathias RA, Guise AJ, Cristea IM (2015) Post-translational modifications regulate Class IIa histone deacetylase (HDAC) function in health and disease. Mol Cell Proteomics 14(3):456–470. doi:10.1074/mcp.O114.046565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM (2015) The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 11(1):787. doi:10.15252/msb.20145808

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the current and past members of the Cristea Lab for development and refinement of the techniques discussed in this chapter. This work was supported by grants from the National Institutes of Health (DP1 DA026192 and R01 HL127640) to IMC and an NSF Graduate Research Fellowship to AJG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana M. Cristea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guise, A.J., Cristea, I.M. (2016). Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5). In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics