Skip to main content

Generation and Purification of Catalytically Active Recombinant Sirtuin5 (SIRT5) Protein

  • Protocol
  • First Online:
Histone Deacetylases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1436))

Abstract

Sirtuin-family deacylases promote health and longevity in mammals. The sirtuin SIRT5 localizes predominantly to the mitochondrial matrix. SIRT5 preferentially removes negatively charged modifications from its target lysines: succinylation, malonylation, and glutarylation. It regulates protein substrates involved in glucose oxidation, ketone body formation, ammonia detoxification, fatty acid oxidation, and ROS management. Like other sirtuins, SIRT5 has recently been linked with neoplasia. Therefore, targeting SIRT5 pharmacologically could conceivably provide new avenues for treatment of metabolic disease and cancer, necessitating development of SIRT5-selective modulators. Here we describe the generation of SIRT5 bacterial expression plasmids, and their use to express and purify catalytically active and inactive forms of SIRT5 protein from E. coli. Additionally, we describe an approach to assay the catalytic activity of purified SIRT5, potentially useful for identification and validation of SIRT5-specific modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet. doi:10.1016/j.tig.2014.04.007

    PubMed  PubMed Central  Google Scholar 

  2. Kumar S, Lombard DB (2015) Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal. doi:10.1089/ars.2014.6213

    Google Scholar 

  3. Feldman JL, Dittenhafer-Reed KE, Denu JM (2012) Sirtuin catalysis and regulation. J Biol Chem 287:42419–42427. doi:10.1074/jbc.R112.378877, R112.378877 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798. doi:10.1006/bbrc.2000.3000, Pii: S0006-291X(00)93000-6

    Google Scholar 

  5. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814. doi:10.1128/MCB.01636-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bao X, Wang Y, Li X, Li XM, Liu Z, Yang T, Wong CF, Zhang J, Hao Q, Li XD (2014) Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3. doi: 10.7554/eLife.02999

    Google Scholar 

  7. Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P, Verdin E (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282:33583–33592. doi:10.1074/jbc.M705488200

    Article  CAS  PubMed  Google Scholar 

  8. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954. doi:10.1016/j.cell.2006.06.057

    Article  CAS  PubMed  Google Scholar 

  9. Laurent G, German NJ, Saha AK, de Boer VC, Davies M, Koves TR, Dephoure N, Fischer F, Boanca G, Vaitheesvaran B, Lovitch SB, Sharpe AH, Kurland IJ, Steegborn C, Gygi SP, Muoio DM, Ruderman NB, Haigis MC (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50:686–698. doi:10.1016/j.molcel.2013.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809. doi:10.1126/science.1207861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930. doi:10.1016/j.molcel.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P, Sahu AK, Li B, Uppala R, Fitch M, Riiff T, Zhu L, Zhou J, Mulhern D, Stevens RD, Ilkayeva OR, Newgard CB, Jacobson MP, Hellerstein M, Goetzman ES, Gibson BW, Verdin E (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–933. doi:10.1016/j.cmet.2013.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, Ro J, Wagner GR, Green MF, Madsen AS, Schmiesing J, Peterson BS, Xu G, Ilkayeva OR, Muehlbauer MJ, Braulke T, Muhlhausen C, Backos DS, Olsen CA, McGuire PJ, Pletcher SD, Lombard DB, Hirschey MD, Zhao Y (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–617. doi:10.1016/j.cmet.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(M111):012658. doi:10.1074/mcp.M111.012658

    PubMed  Google Scholar 

  15. Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570. doi:10.1016/j.cell.2009.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, Jin W, Huang HH, Chen X (2013) SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun 441:191–195. doi:10.1016/j.bbrc.2013.10.033

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura Y, Ogura M, Ogura K, Tanaka D, Inagaki N (2012) SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett 586:4076–4081. doi:10.1016/j.febslet.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  18. Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289:16615–16623. doi:10.1074/jbc.R114.563148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ozden O, Park SH, Wagner BA, Song HY, Zhu Y, Vassilopoulos A, Jung B, Buettner GR, Gius D (2014) Sirt3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2014.08.001

    PubMed  PubMed Central  Google Scholar 

  20. Zwaans BM, Lombard DB (2014) Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 7:1023–1032. doi:10.1242/dmm.016287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu W, Zuo Y, Feng Y, Zhang M (2014) SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. doi:10.1007/s13277-014-2372-4

    Google Scholar 

  22. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635. doi:10.1091/mbc.E05-01-0033, Pii: E05-01-0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu J, Sadhukhan S, Noriega LG, Moullan N, He B, Weiss RS, Lin H, Schoonjans K, Auwerx J (2013) Metabolic characterization of a Sirt5 deficient mouse model. Sci Rep 3:2806. doi:10.1038/srep02806

    PubMed  PubMed Central  Google Scholar 

  24. Mahlknecht U, Ho AD, Letzel S, Voelter-Mahlknecht S (2006) Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res 112:208–212. doi:10.1159/000089872

    Article  CAS  PubMed  Google Scholar 

  25. Matsushita N, Yonashiro R, Ogata Y, Sugiura A, Nagashima S, Fukuda T, Inatome R, Yanagi S (2011) Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells 16:190–202. doi:10.1111/j.1365-2443.2010.01475.x

    Article  CAS  PubMed  Google Scholar 

  26. Gertz M, Steegborn C (2010) Function and regulation of the mitochondrial sirtuin isoform Sirt5 in mammalia. Biochim Biophys Acta 1804:1658–1665. doi:10.1016/j.bbapap.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  27. Nakagawa T, Guarente L (2009) Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany NY) 1:578–581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of Lombard laboratory for helpful discussions. Work in our laboratory is supported by the National Institute of Health (R01GM101171, R21CA177925), Department of Defense Grant (OC140123), the Glenn Foundation for Medical Research, and the Discovery Fund of the University of Michigan Comprehensive Cancer Center. Research reported in this publication was supported in part by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR000433. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Natalie German and Dr. Marcia Haigis are gratefully acknowledged for providing the SIRT5 retroviral plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Lombard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kumar, S., Lombard, D.B. (2016). Generation and Purification of Catalytically Active Recombinant Sirtuin5 (SIRT5) Protein. In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics