Skip to main content

Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1415))

Abstract

Cryo-Electron Microscopy (cryo-EM) has become an important technique to obtain structural insights into large macromolecular assemblies. However the resolution of the density maps do not allow for its interpretation at atomic level. Hence they are combined with high resolution structures along with information from other experimental or bioinformatics techniques to obtain pseudo-atomic models. Here, we describe the use of evolutionary conservation of residues as obtained from protein structures and alignments of homologous proteins to detect errors in the fitting of atomic structures as well as improve accuracy of the protein–protein interfacial regions in the cryo-EM density maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–12128. doi:10.1073/pnas.2032324100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654. doi:10.1038/35036627

    Article  CAS  PubMed  Google Scholar 

  3. Ryan CJ, Cimermancic P, Szpiech ZA, Sali A, Hernandez RD, Krogan NJ (2013) High-resolution network biology: connecting sequence with function. Nat Rev Genet 14(12):865–879. doi:10.1038/nrg3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson CV, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450(7172):973–982. doi:10.1038/nature06523

    Article  CAS  PubMed  Google Scholar 

  5. Milne JL, Borgnia MJ, Bartesaghi A, Tran EE, Earl LA, Schauder DM, Lengyel J, Pierson J, Patwardhan A, Subramaniam S (2013) Cryo-electron microscopy–a primer for the non-microscopist. FEBS J 280(1):28–45. doi:10.1111/febs.12078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nogales E, Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58(4):677–689. doi:10.1016/j.molcel.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  7. Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114(1):123–134, doi:S0092867403004768 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Ward AB, Sali A, Wilson IA (2013) Biochemistry. Integrative structural biology. Science 339(6122):913–915. doi:10.1126/science.1228565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Topf M, Sali A (2005) Combining electron microscopy and comparative protein structure modeling. Curr Opin Struct Biol 15(5):578–585. doi:10.1016/j.sbi.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Wriggers W, Chacon P (2001) Modeling tricks and fitting techniques for multiresolution structures. Structure 9(9):779–788. doi:10.1016/S0969-2126(01)00648-7

    Article  CAS  PubMed  Google Scholar 

  11. Garzon JI, Kovacs J, Abagyan R, Chacon P (2007) ADP_EM: fast exhaustive multi-resolution docking for high-throughput coverage. Bioinformatics 23(4):427–433. doi:10.1093/bioinformatics/btl625

    Article  CAS  PubMed  Google Scholar 

  12. Saha M, Levitt M, Chiu W (2010) MOTIF-EM: an automated computational tool for identifying conserved regions in CryoEM structures. Bioinformatics 26(12):i301–i309. doi:10.1093/bioinformatics/btq195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lasker K, Topf M, Sali A, Wolfson HJ (2009) Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. J Mol Biol 388(1):180–194. doi:10.1016/j.jmb.2009.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawabata T (2008) Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a gaussian mixture model. Biophys J 95(10):4643–4658. doi:10.1529/biophysj.108.137125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Landgraf R, Xenarios I, Eisenberg D (2001) Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. J Mol Biol 307(5):1487–1502. doi:10.1006/jmbi.2001.4540

    Article  CAS  PubMed  Google Scholar 

  16. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23(15):1875–1882. doi:10.1093/bioinformatics/btm270

    Article  CAS  PubMed  Google Scholar 

  17. Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES (2004) Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci 13(1):190–202. doi:10.1110/ps.03323604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guharoy M, Chakrabarti P (2005) Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci U S A 102(43):15447–15452. doi:10.1073/pnas.0505425102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci U S A 102(31):10930–10935. doi:10.1073/pnas.0502667102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bateman A, Coggill P, Finn RD (2010) DUFs: families in search of function. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66(Pt 10):1148–1152. doi:10.1107/S1744309110001685

    Article  CAS  Google Scholar 

  21. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540. doi:10.1006/jmbi.1995.0159

    CAS  PubMed  Google Scholar 

  22. Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28(3):405–420. doi:10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  23. Stebbings LA, Mizuguchi K (2004) HOMSTRAD: recent developments of the Homologous Protein Structure Alignment Database. Nucleic Acids Res 32(Database issue):D203–D207. doi:10.1093/nar/gkh027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balaji S, Sujatha S, Kumar SS, Srinivasan N (2001) PALI-a database of Phylogeny and ALIgnment of homologous protein structures. Nucleic Acids Res 29(1):61–65. doi:10.1093/nar/29.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahajan S, Agarwal G, Iftekhar M, Offmann B, de Brevern AG, Srinivasan N (2013) DoSA: Database of Structural Alignments. Database (Oxford) 2013: bat048. Doi:10.1093/database/bat048

    Google Scholar 

  26. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310(1):243–257. doi:10.1006/jmbi.2001.4762

    Article  CAS  PubMed  Google Scholar 

  27. de Juan D, Pazos F, Valencia A (2013) Emerging methods in protein co-evolution. Nat Rev Genet 14(4):249–261. doi:10.1038/nrg3414

    Article  PubMed  Google Scholar 

  28. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6(12), e28766. doi:10.1371/journal.pone.0028766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hopf TA, Scharfe CP, Rodrigues JP, Green AG, Kohlbacher O, Sander C, Bonvin AM, Marks DS (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife 3. Doi:10.7554/eLife.03430

    Google Scholar 

  30. Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. Elife 3:e02030. doi:10.7554/eLife.02030

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hwang H, Vreven T, Janin J, Weng Z (2010) Protein-protein docking benchmark version 4.0. Proteins 78(15):3111–3114. doi:10.1002/prot.22830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157(1):38–46. doi:10.1016/j.jsb.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  33. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55(3):379–400. doi:10.1016/0022-2836(71)90324-X

    Article  CAS  PubMed  Google Scholar 

  34. Rekha N, Machado SM, Narayanan C, Krupa A, Srinivasan N (2005) Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: implications for metabolic and signaling pathways. Proteins 58(2):339–353. doi:10.1002/prot.20319

    Article  CAS  PubMed  Google Scholar 

  35. Andreani J, Faure G, Guerois R (2013) InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution. Bioinformatics 29(14):1742–1749. doi:10.1093/bioinformatics/btt260

    Article  CAS  PubMed  Google Scholar 

  36. Faure G, Andreani J, Guerois R (2012) InterEvol database: exploring the structure and evolution of protein complex interfaces. Nucleic Acids Res 40(Database issue):D847–D856. doi:10.1093/nar/gkr845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402, doi: gka562 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  40. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1):281–287. doi:10.1016/j.jsb.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  41. Wriggers W (2010) Using Situs for the integration of multi-resolution structures. Biophys Rev 2(1):21–27. doi:10.1007/s12551-009-0026-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chacon P, Wriggers W (2002) Multi-resolution contour-based fitting of macromolecular structures. J Mol Biol 317(3):375–384. doi:10.1006/jmbi.2002.5438

    Article  CAS  PubMed  Google Scholar 

  43. Mendez R, Leplae R, De Maria L, Wodak SJ (2003) Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins 52(1):51–67. doi:10.1002/prot.10393

    Article  CAS  PubMed  Google Scholar 

  44. Martin ACR ProFit program. Accessed from http://www.bioinf.org.uk/software/profit/

  45. R Core Team (2015) R: a language and environment for statistical computing. Accessed from http://www.R-project.org

    Google Scholar 

  46. Plotly Technologies Inc. (2015) Plotly, collaborative data science. Accessed from https://plot.ly

  47. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423. doi:10.1093/bioinformatics/btp163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Samso M, Feng W, Pessah IN, Allen PD (2009) Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 7(4):e85. doi:10.1371/journal.pbio.1000085

    Article  PubMed  Google Scholar 

  49. Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287(38):31624–31632. doi:10.1074/jbc.R112.349068

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yan Z, Bai XC, Yan C, Wu J, Li Z, Xie T, Peng W, Yin CC, Li X, Scheres SH, Shi Y, Yan N (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517(7532):50–55. doi:10.1038/nature14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Samso M, Shen X, Allen PD (2006) Structural characterization of the RyR1-FKBP12 interaction. J Mol Biol 356(4):917–927. doi:10.1016/j.jmb.2005.12.023

    Article  CAS  PubMed  Google Scholar 

  52. Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7(3):188–197. doi:10.1038/nrm1859

    Article  CAS  PubMed  Google Scholar 

  53. Beltrao P, Kiel C, Serrano L (2007) Structures in systems biology. Curr Opin Struct Biol 17(3):378–384. doi:10.1016/j.sbi.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  54. Beck M, Topf M, Frazier Z, Tjong H, Xu M, Zhang S, Alber F (2011) Exploring the spatial and temporal organization of a cell’s proteome. J Struct Biol 173(3):483–496. doi:10.1016/j.jsb.2010.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiu W, Baker ML, Almo SC (2006) Structural biology of cellular machines. Trends Cell Biol 16(3):144–150. doi:10.1016/j.tcb.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  56. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. doi:10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  57. Rodrigues JP, Karaca E, Bonvin AM (2015) Information-driven structural modelling of protein-protein interactions. Methods Mol Biol 1215:399–424. doi:10.1007/978-1-4939-1465-4_18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by Department of Biotechnology, Government of India, Mathematical Biology initiative, Department of Science and Technology and the Indo-French collaborative grant (CEFIPRA). N.S. is a J.C. Bose National Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanaswamy Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rakesh, R., Srinivasan, N. (2016). Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics