Skip to main content

Comparative Transcriptomics in Yeasts

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Comparative functional genomics approaches have already shed an important light on the evolution of gene expression that underlies phenotypic diversity. However, comparison across many species in a phylogeny presents several major challenges. Here, we describe our experimental framework for comparative transcriptomics in a complex phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389

    Article  CAS  PubMed  Google Scholar 

  2. Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution of alternative transcriptional circuits with identical logic. Nature 443:415

    Article  CAS  PubMed  Google Scholar 

  3. Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci U S A 102:7203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Field Y et al (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4, e1000216

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ihmels J et al (2005) Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938

    Article  CAS  PubMed  Google Scholar 

  6. Hogues H et al (2008) Transcription factor substitution during the evolution of fungal ribosome regulation. Mol Cell 29:552

    Article  CAS  PubMed  Google Scholar 

  7. Tirosh I, Barkai N (2008) Evolution of gene sequence and gene expression are not correlated in yeast. Trends Genet 24:109

    Article  CAS  PubMed  Google Scholar 

  8. Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8, e1000414

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ (2011) Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res 21(11):1851–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Baker CR, Tuch BB, Johnson AD (2011) Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proc Natl Acad Sci U S A 108:7493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Habib N, Wapinski I, Margalit H, Regev A, Friedman N (2012) A functional selection model explains evolutionary robustness despite plasticity in regulatory networks. Mol Syst Biol 8:619

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617

    Article  CAS  PubMed  Google Scholar 

  13. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708

    Article  CAS  PubMed  Google Scholar 

  14. Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54

    Article  CAS  PubMed  Google Scholar 

  15. Thompson DA et al (2013) Evolutionary principles of modular gene regulation in yeasts. ELife 2, e00603

    PubMed Central  PubMed  Google Scholar 

  16. Levin JZ et al (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Roy S et al (2013) Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Res 23:1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kurtzman CP (ed) (2000) The yeasts a taxonomic study, 4th edn. Elsevier, New York, NY, p 1055

    Google Scholar 

  19. Wapinski I et al (2010) Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proc Natl Acad Sci U S A 107:5505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant 2R01CA119176-01 and a SPARC grant from the Broad Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn A. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thompson, D.A. (2016). Comparative Transcriptomics in Yeasts. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics