Skip to main content

Profiling of Yeast Lipids by Shotgun Lipidomics

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Lipidomics is a rapidly growing technology for identification and quantification of a variety of cellular lipid molecules. Following the successful development and application of functional genomic technologies in yeast Saccharomyces cerevisiae, we witness a recent expansion of lipidomics applications in this model organism. The applications include detailed characterization of the yeast lipidome as well as screening for perturbed lipid phenotypes across hundreds of yeast gene deletion mutants. In this chapter, we describe sample handling, mass spectrometry, and bioinformatics methods developed for yeast lipidomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breslow DK, Collins SR, Bodenmiller B et al (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. De Smet CH, Vittone E, Scherer M et al (2012) The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p. Mol Biol Cell 23(7):1146–1156

    Article  PubMed Central  PubMed  Google Scholar 

  3. Guan XL, Souza CM, Pichler H et al (2009) Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell 20(7):2083–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285(21):15663–15667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kurat CF, Wolinski H, Petschnigg J et al (2009) Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33(1):53–63

    Article  CAS  PubMed  Google Scholar 

  6. Surma MA, Klose C, Peng D et al (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Daum G, Lees ND, Bard M et al (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14(16):1471–1510

    Article  CAS  PubMed  Google Scholar 

  8. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ejsing CS, Sampaio JL, Surendranath V et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Klemm RW, Ejsing CS, Surma MA et al (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185(4):601–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Klose C, Surma MA, Gerl MJ et al (2012) Flexibility of a eukaryotic lipidome—insights from yeast lipidomics. PLoS One 7(4), e35063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Surma MA, Klose C, Klemm RW et al (2011) Generic sorting of raft lipids into secretory vesicles in yeast. Traffic 12(9):1139–1147

    Article  CAS  PubMed  Google Scholar 

  13. Tarasov K, Stefanko A, Casanovas A et al (2014) High-content screening of yeast mutant libraries by shotgun lipidomics. Mol Biosyst 10(6):1364–1376

    Article  CAS  PubMed  Google Scholar 

  14. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598

    Article  CAS  PubMed  Google Scholar 

  15. Wang M, Han X (2014) Multidimensional mass spectrometry-based shotgun lipidomics. Methods Mol Biol 1198:203–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ejsing CS, Moehring T, Bahr U et al (2006) Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. J Mass Spectrom 41(3):372–389

    Article  CAS  PubMed  Google Scholar 

  17. Klose C, Ejsing CS, Garcia-Saez AJ et al (2010) Yeast lipids can phase-separate into micrometer-scale membrane domains. J Biol Chem 285(39):30224–30232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sandhoff R, Brugger B, Jeckel D et al (1999) Determination of cholesterol at the low picomole level by nano-electrospray ionization tandem mass spectrometry. J Lipid Res 40(1):126–132

    CAS  PubMed  Google Scholar 

  19. Liebisch G, Binder M, Schifferer R et al (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761(1):121–128

    Article  CAS  PubMed  Google Scholar 

  20. Schuhmann K, Almeida R, Baumert M et al (2012) Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom 47(1):96–104

    Article  CAS  PubMed  Google Scholar 

  21. Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification system for lipids. J Lipid Res 46(5):839–861

    Article  CAS  PubMed  Google Scholar 

  22. Foster JM, Moreno P, Fabregat A et al (2013) LipidHome: a database of theoretical lipids optimized for high throughput mass spectrometry lipidomics. PLoS One 8(5), e61951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Husen P, Tarasov K, Katafiasz M et al (2013) Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One 8(11), e79736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Herzog R, Schwudke D, Schuhmann K et al (2011) A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 12(1):R8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ejsing CS, Husen P, Tarasov K (2012) Lipid informatics: from a mass spectrum to interactomics. Lipidomics. Wiley, Weinheim, pp 147–174. doi:10.1002/9783527655946.ch8

    Google Scholar 

  26. Fahy E, Cotter D, Byrnes R et al (2007) Bioinformatics for lipidomics. Methods Enzymol 432:247–273

    Article  CAS  PubMed  Google Scholar 

  27. Kamleh MA, Ebbels TM, Spagou K et al (2012) Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Anal Chem 84(6):2670–2677

    Article  CAS  PubMed  Google Scholar 

  28. Wang SY, Kuo CH, Tseng YJ (2013) Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Anal Chem 85(2):1037–1046

    Article  CAS  PubMed  Google Scholar 

  29. Demšar J, Curk T, Erjavec A (2013) Orange: data mining toolbox in python. J Mach Learn Res 14:4

    Google Scholar 

  30. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234(3):466–468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kai Simons for critically reading the manuscript. C.K. acknowledges fruitful discussions with Julio L. Sampaio and Michal A. Surma.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Klose or Kirill Tarasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Klose, C., Tarasov, K. (2016). Profiling of Yeast Lipids by Shotgun Lipidomics. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics