Skip to main content

Systematic Determination of Transcription Factor DNA-Binding Specificities in Yeast

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Understanding how genes are regulated, decoding their “regulome”, is one of the main challenges of the post-genomic era. Here, we describe the in vitro method we used to associate cis-regulatory sites with cognate trans-regulators by characterizing the DNA-binding specificity of the vast majority of yeast transcription factors using Protein Binding Microarrays. This approach can be implemented to any given organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ran B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  Google Scholar 

  2. Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  PubMed  Google Scholar 

  3. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Google Scholar 

  4. Wei C-L, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  CAS  PubMed  Google Scholar 

  5. Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9:2944–2949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 37, e151

    Google Scholar 

  7. Jolma A, Kivioja T, Toivonen J et al (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20:861–873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Berger MF, Philippakis AA, Qureshi AM et al (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24:1429–1435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Badis G, Chan ET, van Bakel H et al (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32:878–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gordân R, Murphy KF, McCord RP et al (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12:R125

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhu C, Byers KJRP, McCord RP et al (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19:556–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Berger MF, Badis G, Gehrke AR et al (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133:1266–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Badis G, Berger MF, Philippakis AA et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324:1720–1723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Busser BW, Huang D, Rogacki KR et al (2012) Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network. Proc Natl Acad Sci U S A 109:20768–20773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Schultz J, Copley RR, Doerks T et al (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hughes TR, de Boer CG (2013) Mapping yeast transcriptional networks. Genetics 195:9–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. de Boer CG, Hughes TR (2011) YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res 40:D169–D179

    Article  PubMed Central  PubMed  Google Scholar 

  19. Li MZ, Elledge SJ (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37:311–319

    Google Scholar 

  20. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Walhout AJ, Temple GF, Brasch MA et al (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592

    Article  CAS  PubMed  Google Scholar 

  22. Dudley AM, Aach J, Steffen MA et al (2002) Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci 99:7554–7559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huber W, von Heydebreck A, Sueltmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  24. Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4:393–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Birmingham A, Selfors LM, Forster T et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc 8:1765–1786

    Article  PubMed  Google Scholar 

  27. Alleyne TM, Pena-Castillo L, Badis G et al (2009) Predicting the binding preference of transcription factors to individual DNA k-mers. Bioinformatics 25:1012–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Christensen RG, Enuameh MS, Noyes MB et al (2012) Recognition models to predict DNA-binding specificities of homeodomain proteins. Bioinformatics 28:i84–i89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Weirauch MT, Cote A, Norel R et al (2013) Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotechnol 31:126–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhao Y, Stormo GD (2011) Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat Biotechnol 29:480–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  32. Cherry JM, Hong EL, Amundsen C et al (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40:D700–D705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sandelin A, Alkema W, Engström P et al (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94

    Google Scholar 

  34. Workman CT, Yin Y, Corcoran DL et al (2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res 33:W389–W392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Shaheynoor Talukder for standard operating procedure and Timothy R. Hughes for data availability. We also thank Esther T. Chan for useful comments. G.B. work was supported by the CIHR, the Institut Pasteur and the Centre National pour la Recherche Scientifique. LPC’s work was supported by a NSERC Discovery Grant and Memorial University of Newfoundland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenael Badis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peña-Castillo, L., Badis, G. (2016). Systematic Determination of Transcription Factor DNA-Binding Specificities in Yeast. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics