Skip to main content

Genome-Wide Chromatin Immunoprecipitation in Candida albicans and Other Yeasts

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Chromatin immunoprecipitation experiments are critical to investigating the interactions between DNA and a wide range of nuclear proteins within a cell or biological sample. In this chapter we outline an optimized protocol for genome-wide chromatin immunoprecipitation that has been used successfully for several distinct morphological forms of numerous yeast species, and include an optimized method for amplification of chromatin immunoprecipitated DNA samples and hybridization to a high-density oligonucleotide tiling microarray. We also provide detailed suggestions on how to analyze the complex data obtained from these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Nobile CJ et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tuch BB et al (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6, e38

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cain CW et al (2012) A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 190:511–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Baker CR et al (2012) Protein modularity, cooperative binding, and hybrid regulatory States underlie transcriptional network diversification. Cell 151:80–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci U S A 105:4880–4885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Beyhan S et al (2013) A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol 11, e1001614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pérez JC, Johnson AD (2013) Regulatory circuits that enable proliferation of the fungus Candida albicans in a mammalian host. PLoS Pathog 9, e1003780

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hernday AD et al (2013) Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol Microbiol 90:22–35

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Hernday AD et al (2010) Genetics and molecular biology in Candida albicans. Methods Enzymol 470:737–758

    Article  CAS  PubMed  Google Scholar 

  11. Homann OR, Johnson AD (2010) MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8:49

    Article  PubMed Central  PubMed  Google Scholar 

  12. Chakravarty A et al (2007) A novel ensemble learning method for de novo computational identification of DNA binding sites. BMC Bioinformatics 8:249

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liu X, Brutlag DL, Liu JS (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 127–138

    Google Scholar 

  14. Bailey TL et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Teixeira MC et al (2014) The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Res 42:D161–D166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gupta S et al (2007) Quantifying similarity between motifs. Genome Biol 8:R24

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kent WJ et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ji H et al (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26:1293–1300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lohse MB et al (2013) Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proc Natl Acad Sci U S A 110:7660–7665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Teytelman L et al (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110:18602–18607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hnisz D et al (2013) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 8, e1003118

    Article  Google Scholar 

  22. Tompa M et al (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23:137–144

    Article  CAS  PubMed  Google Scholar 

  23. Baker CR, Tuch BB, Johnson AD (2011) Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proc Natl Acad Sci U S A 108:7493–7498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Askew C et al (2011) The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion. Mol Microbiol 79:940–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ren B et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

  27. Traven A, Jelicic B, Sopta M (2006) Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 7:496–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grants R00AI100896 and R01AI049187.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron D. Hernday or Clarissa J. Nobile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lohse, M.B., Kongsomboonvech, P., Madrigal, M., Hernday, A.D., Nobile, C.J. (2016). Genome-Wide Chromatin Immunoprecipitation in Candida albicans and Other Yeasts. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics