Skip to main content

Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles

  • Protocol
Protein Arginylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1337))

Abstract

The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This method can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20(8):1298–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134(5):866–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Xu GQ, Shin SBY, Jaffrey SR (2009) Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc Natl Acad Sci U S A 106(46):19310–19315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kleifeld O, Doucet A, Prudova A, Keller UAD, Gioia M, Kizhakkedathu JN, Overall CM (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6(10):1578–1611

    Article  CAS  PubMed  Google Scholar 

  5. Taki M, Kuno A, Matoba S, Kobayashi Y, Futami J, Murakami H, Suga H, Taira K, Hasegawa T, Sisido M (2006) Leucyl/phenylalanyl-tRNA-protein transferase-mediated chemoenzymatic coupling of N-terminal arg/lys units in posttranslationally processed proteins with non-natural amino acids. Chembiochem 7(11):1676–1679

    Article  CAS  PubMed  Google Scholar 

  6. Connor RE, Piatkov K, Varshavsky A, Tirrell DA (2008) Enzymatic N-terminal addition of noncanonical amino acids to peptides and proteins. Chembiochem 9(3):366–369

    Article  CAS  PubMed  Google Scholar 

  7. Wagner AM, Fegley MW, Warner JB, Grindley CLJ, Marotta NP, Petersson EJ (2011) N-terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc 133(38):15139–15147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ninnis RL, Spall SK, Talbo GH, Truscott KN, Dougan DA (2009) Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J 28(12):1732–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Leibowitz MJ, Soffer RL (1969) A soluble enzyme from Escherichia coli which catalyzes transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem Biophys Res Commun 36(1):47–53

    Article  CAS  PubMed  Google Scholar 

  10. Scarpulla RC, Deutch CE, Soffer RL (1976) Transfer of methionyl residues by leucyl, phenylalanyl-transfer-RNA-protein transferase. Biochem Biophys Res Commun 71(2):584–589

    Article  CAS  PubMed  Google Scholar 

  11. Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA, Varshavsky A (1998) The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl Acad Sci U S A 95(14):7898–7903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, Du F, Varshavsky A (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297(5578):96–99

    Article  CAS  PubMed  Google Scholar 

  13. Ferber S, Ciechanover A (1987) Role of arginine-transfer RNA in protein-degradation by the ubiquitin pathway. Nature 326(6115):808–811

    Article  CAS  PubMed  Google Scholar 

  14. Kwon YT, Xia ZX, Davydov IV, Lecker SH, Varshavsky A (2001) Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3 alpha) of the N-end rule pathway. Mol Cell Biol 21(23):8007–8021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang JL, Han XM, Saha S, Xu T, Rai R, Zhang FL, Wolf YI, Wolfson A, Yates JR, Kashina A (2011) Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Chem Biol 18(1):121–130

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tanaka T, Wagner AM, Warner JB, Wang YJ, Petersson EJ (2013) Expressed protein ligation at methionine: N-terminal attachment of homocysteine, ligation, and masking. Angew Chem Int Ed Engl 52(24):6210–6213

    Article  CAS  PubMed  Google Scholar 

  17. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998

    Article  CAS  Google Scholar 

  18. Debets MF, van Berkel SS, Schoffelen S, Rutjes F, van Hest JCM, van Delft FL (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun 46(1):97–99

    Article  CAS  Google Scholar 

  19. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  20. Soffer RL (1973) Peptide acceptors in leucine, phenylalanine transfer-reaction. J Biol Chem 248(24):8424–8428

    CAS  PubMed  Google Scholar 

  21. Link AJ, Vink MKS, Agard NJ, Prescher JA, Bertozzi CR, Tirrell DA (2006) Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc Natl Acad Sci U S A 103(27):10180–10185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Taiji M, Yokoyama S, Miyazawa T (1983) Transacylation rates of (aminoacyl)adenosine moiety at the 3′-terminus of aminoacyl transfer ribonucleic acid. Biochemistry 22:3220–3225

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe K, Toh Y, Suto K, Shimizu Y, Oka N, Wada T, Tomita K (2007) Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449(7164):867–871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the University of Pennsylvania and the Searle Scholars Program (10-SSP-214 to EJP). HEG was supported by a summer research fellowship from Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. James Petersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wagner, A.M., Warner, J.B., Garrett, H.E., Walters, C.R., Petersson, E.J. (2015). Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles. In: Kashina, A. (eds) Protein Arginylation. Methods in Molecular Biology, vol 1337. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2935-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2935-1_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2934-4

  • Online ISBN: 978-1-4939-2935-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics