Skip to main content

Functional Studies of DNA-Protein Interactions Using FRET Techniques

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1334))

Abstract

Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of protein-DNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillisch A, Lorenz M, Diekmann S (2001) Recent advances in FRET: distance determination in protein-DNA complexes. Curr Opin Struct Biol 11:201–207

    Article  CAS  PubMed  Google Scholar 

  2. Holbrook SR (2005) RNA structure: the long and the short of it. Curr Opin Struct Biol 15:302–308

    Article  CAS  PubMed  Google Scholar 

  3. Yan Y, Marriott G (2003) Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol 7:635–640

    Article  CAS  PubMed  Google Scholar 

  4. Michalet X, Kapanidis AN, Laurence T, Pinaud F, Doose S, Pflughoefft M, Weiss S (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct 32:161–182

    Article  CAS  PubMed  Google Scholar 

  5. Lorenz M, Hillisch A, Payet D, Buttinelli M, Travers A, Diekmann S (1999) DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 38:12150–12158

    Article  CAS  PubMed  Google Scholar 

  6. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  CAS  PubMed  Google Scholar 

  7. Stuhmeier F, Hillisch A, Clegg RM, Diekman S (2000) Fluorescence energy transfer analysis of DNA structures containing several bulges and their interaction with CAP. J Mol Biol 302:1081–1100

    Article  CAS  PubMed  Google Scholar 

  8. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Article  CAS  PubMed  Google Scholar 

  9. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Stuhmeier F, Hillisch A, Clegg RM, Diekman S (2000) Practical aspects of fluorescence resonance energy transfer (FRET) and its applications in nucleic acid biochemistry. In: Travers A, Buckle M (eds) DNA-protein interactions. Oxford University Press, Oxford, pp 77–94

    Google Scholar 

  11. Bera A, Roche AC, Nandi PK (2007) Bending and unwinding of nucleic acid by prion protein. Biochemistry 46:1320–1328

    Article  CAS  PubMed  Google Scholar 

  12. Lorenz M, Diekmann S (2006) Distance determination in protein-DNA complexes using fluorescence resonance energy transfer. Methods Mol Biol 335:243–255

    CAS  PubMed  Google Scholar 

  13. Passner JM, Steitz TA (1997) The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc Natl Acad Sci U S A 94:2843–2847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA (2007) TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. J Mol Biol 372:619–632

    Article  CAS  PubMed  Google Scholar 

  15. Dragan AI, Klass J, Read C, Churchill ME, Crane-Robinson C, Privalov PL (2003) DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution. J Mol Biol 331:795–813

    Article  CAS  PubMed  Google Scholar 

  16. Kuznetsov SV, Sugimura S, Vivas P, Crothers DM, Ansari A (2006) Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Proc Natl Acad Sci U S A 103:18515–18520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lorenz M, Hillisch A, Goodman SD, Diekmann S (1999) Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by fluorescence resonance energy transfer. Nucleic Acids Res 27:4619–4625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116:39–50

    Article  CAS  PubMed  Google Scholar 

  19. Xiao J, Singleton SF (2002) Elucidating a key intermediate in homologous DNA strand exchange: structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J Mol Biol 320:529–558

    Article  CAS  PubMed  Google Scholar 

  20. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gupta RC, Golub EI, Wold MS, Radding CM (1998) Polarity of DNA strand exchange promoted by recombination proteins of the RecA family. Proc Natl Acad Sci U S A 95:9843–9848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kuznetsov SV, Kozlov AG, Lohman TM, Ansari A (2006) Microsecond dynamics of protein-DNA interactions: direct observation of the wrapping/unwrapping kinetics of single-stranded DNA around the E. coli SSB tetramer. J Mol Biol 359:55–65

    Article  CAS  PubMed  Google Scholar 

  23. Lucius AL, Jason Wong C, Lohman TM (2004) Fluorescence stopped-flow studies of single turnover kinetics of E. coli RecBCD helicase-catalyzed DNA unwinding. J Mol Biol 339:731–750

    Article  CAS  PubMed  Google Scholar 

  24. Kvaratskhelia M, Wardleworth BN, Bond CS, Fogg JM, Lilley DM, White MF (2002) Holliday junction resolution is modulated by archaeal chromatin components in vitro. J Biol Chem 277:2992–2996

    Article  CAS  PubMed  Google Scholar 

  25. Furey WS, Joyce CM, Osborne MA, Klenerman D, Peliska JA, Balasubramanian S (1998) Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry 37:2979–2990

    Article  CAS  PubMed  Google Scholar 

  26. Mukhopadhyay J, Mekler V, Kortkhonjia E, Kapanidis AN, Ebright YW, Ebright RH (2003) Fluorescence resonance energy transfer (FRET) in analysis of transcription-complex structure and function. Methods Enzymol 371:144–159

    Article  CAS  PubMed  Google Scholar 

  27. Heyduk T, Niedziela-Majka A (2001) Fluorescence resonance energy transfer analysis of Escherichia coli RNA polymerase and polymerase-DNA complexes. Biopolymers 61:201–213

    Article  PubMed  Google Scholar 

  28. Margeat E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S (2006) Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys J 90:1419–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH (2006) Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314:1144–1147

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lee SP, Han MK (1997) Fluorescence assays for DNA cleavage. Methods Enzymol 278:343–363

    Article  CAS  PubMed  Google Scholar 

  31. Eggeling C, Jager S, Winkler D, Kask P (2005) Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction. Curr Pharm Biotechnol 6:351–371

    Article  CAS  PubMed  Google Scholar 

  32. Ghosh SS, Eis PS, Blumeyer K, Fearon K, Millar DP (1994) Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer. Nucleic Acids Res 22:3155–3159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hiller DA, Rodriguez AM, Perona JJ (2005) Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC. J Mol Biol 354:121–136

    Article  CAS  PubMed  Google Scholar 

  34. Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B 110:20745–20748

    Article  CAS  PubMed  Google Scholar 

  35. Lin J, Gao H, Schallhorn KA, Harris RM, Cao W, Ke PC (2007) Lesion recognition and cleavage by endonuclease V: a single-molecule study. Biochemistry 46:7132–7137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. van der Meer BW (2002) Kappa-squared: from nuisance to new sense. J Biotechnol 82:181–196

    PubMed  Google Scholar 

  37. Klostermeier D, Millar DP (2001) Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 61:159–179

    Article  PubMed  Google Scholar 

  38. Cornish PV, Ha T (2007) A survey of single-molecule techniques in chemical biology. ACS Chem Biol 2:53–61

    Article  CAS  PubMed  Google Scholar 

  39. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86

    Article  CAS  PubMed  Google Scholar 

  40. Ha T (2004) Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy. Biochemistry 43:4055–4063

    Article  CAS  PubMed  Google Scholar 

  41. Ritort F (2006) Single-molecule experiments in biological physics: methods and applications. J Phys Condens Matter 18:R531–R583

    Article  CAS  PubMed  Google Scholar 

  42. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597

    Article  CAS  Google Scholar 

  43. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  PubMed  Google Scholar 

  44. Schwille P (2003) TIR-FCS: staying on the surface can sometimes be better. Biophys J 85:2783–2784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wazawa T, Ueda M (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 95:77–106

    CAS  PubMed  Google Scholar 

  46. Rasnik I, McKinney SA, Ha T (2005) Surfaces and orientations: much to FRET about? Acc Chem Res 38:542–548

    Article  CAS  PubMed  Google Scholar 

  47. Cisse I, Okumus B, Joo C, Ha T (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci U S A 104:12646–12650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Myong S, Bruno MM, Pyle AM, Ha T (2007) Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317:513–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lu HP, Iakoucheva LM, Ackerman EJ (2001) Single-molecule conformational dynamics of fluctuating noncovalent DNA-protein interactions in DNA damage recognition. J Am Chem Soc 123:9184–9185

    Article  CAS  PubMed  Google Scholar 

  50. Segers-Nolten GM, Wyman C, Wijgers N, Vermeulen W, Lenferink AT, Hoeijmakers JH, Greve J, Otto C (2002) Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes. Nucleic Acids Res 30:4720–4727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Lemay JF, Penedo JC, Tremblay R, Lilley DM, Lafontaine DA (2006) Folding of the adenine riboswitch. Chem Biol 13:857–868

    Article  CAS  PubMed  Google Scholar 

  52. Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100:3960–3964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Groll J, Amirgoulova EV, Ameringer T, Heyes CD, Rocker C, Nienhaus GU, Moller M (2004) Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J Am Chem Soc 126:4234–4239

    Article  CAS  PubMed  Google Scholar 

  54. Adachi K, Yasuda R, Noji H, Itoh H, Harada Y, Yoshida M, Kinosita K Jr (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci U S A 97:7243–7247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kastner CN, Prummer M, Sick B, Renn A, Wild UP, Dimroth P (2003) The citrate carrier CitS probed by single-molecule fluorescence spectroscopy. Biophys J 84:1651–1659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Boukobza E, Sonnenfeld A, Haran G (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J Phys Chem B 105:12165–12170

    Article  CAS  Google Scholar 

  57. Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117:10953–10964

    Article  CAS  Google Scholar 

  58. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl 45:4562–4589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Biological and Biotechnology Science Research Council (UK), the Royal Society (UK), and the National Sciences and Engineering Research Council (Canada) and the Universities of Sherbrooke (Canada) and St Andrews (UK) for financial support. We also thank all members of our labs for helpful discussion and critical reading of the manuscript. J.C.P. is a Fellow of the Scottish Universities Physics Alliance (SUPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Lafontaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Blouin, S., Craggs, T.D., Lafontaine, D.A., Penedo, J.C. (2015). Functional Studies of DNA-Protein Interactions Using FRET Techniques. In: Leblanc, B., Rodrigue, S. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 1334. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2877-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2877-4_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2876-7

  • Online ISBN: 978-1-4939-2877-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics