Skip to main content

Studies of Perinatal Asphyxial Brain Injury in the Fetal Sheep

  • Protocol
Animal Models of Neurodevelopmental Disorders

Part of the book series: Neuromethods ((NM,volume 104))

  • 769 Accesses

Abstract

In order to develop more effective ways of identifying, managing, and treating perinatal asphyxial brain injury, stable experimental models are essential. Although the outcome of clinical asphyxia is highly variable, modern imaging studies have distinguished two major patterns of injury in term infants, involving primary damage in either the parasagittal cortex or in the basal ganglia respectively. The present review describes the experimental preparation in detail, and the key experimental factors that determine the pattern and severity of brain injury in chronically instrumented fetal sheep, including the depth (“severity”), duration, and repetition of the insult, the maturity, and condition of the fetus. These models are valuable to dissect the pathogenesis of key clinical patterns of brain injury in a stable thermal and biochemical environment, and to test therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunn AJ, Gunn TR (1997) Changes in risk factors for hypoxic-ischaemic seizures in term infants. Aust N Z J Obstet Gynaecol 37:36–39

    Article  CAS  PubMed  Google Scholar 

  2. Westgate JA, Gunn AJ, Gunn TR (1999) Antecedents of neonatal encephalopathy with fetal acidaemia at term. Br J Obstet Gynaecol 106:774–782

    Article  CAS  PubMed  Google Scholar 

  3. Wyatt JS, Gluckman PD, Liu PY, Azzopardi D, Ballard RA, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ, and on behalf of the CoolCap study group (2007) Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 119: 912–921

    Google Scholar 

  4. MacLennan A, The International Cerebral Palsy Task Force, Gunn AJ, Bennet L, Westgate JA (1999) A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ 319: 1054–1059

    Google Scholar 

  5. Gunn AJ, Bennet L (2009) Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 36:579–593

    Article  PubMed Central  PubMed  Google Scholar 

  6. Steinman KJ, Gorno-Tempini ML, Glidden DV, Kramer JH, Miller SP, Barkovich AJ, Ferriero DM (2009) Neonatal watershed brain injury on magnetic resonance imaging correlates with verbal IQ at 4 years. Pediatrics 123:1025–1030

    Article  PubMed Central  PubMed  Google Scholar 

  7. Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N, Glidden DV, Deming D, Partridge JC, Wu YW, Ashwal S, Ferriero DM (2005) Patterns of brain injury in term neonatal encephalopathy. J Pediatr 146:453–460

    Article  PubMed  Google Scholar 

  8. Bennet L, Westgate J, Gluckman PD, Gunn AJ (2003) Fetal responses to asphyxia. In: Stevenson DK, Sunshine P (eds) Fetal and neonatal brain injury: mechanisms, management, and the risks of practice, 2nd edn. Cambridge University Press, Cambridge, pp 83–110

    Chapter  Google Scholar 

  9. Calvert JW, Zhang JH (2005) Pathophysiology of an hypoxic-ischemic insult during the perinatal period. Neurol Res 27:246–260

    Article  PubMed  Google Scholar 

  10. Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49:735–741

    Article  CAS  PubMed  Google Scholar 

  11. Dijkhuizen RM, Beekwilder JP, van der Worp HB, Berkelbach van der Sprenkel JW, Tulleken KA, Nicolay K (1999) Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res 840:194–205

    Article  CAS  PubMed  Google Scholar 

  12. Gunn AJ, Parer JT, Mallard EC, Williams CE, Gluckman PD (1992) Cerebral histologic and electrocorticographic changes after asphyxia in fetal sheep. Pediatr Res 31:486–491

    Article  CAS  PubMed  Google Scholar 

  13. Mallard EC, Williams CE, Johnston BM, Gluckman PD (1994) Increased vulnerability to neuronal damage after umbilical cord occlusion in fetal sheep with advancing gestation. Am J Obstet Gynecol 170:206–214

    Article  CAS  PubMed  Google Scholar 

  14. Fujii EY, Takahashi N, Kodama Y, Roman C, Ferriero DM, Parer JT (2003) Hemodynamic changes during complete umbilical cord occlusion in fetal sheep related to hippocampal neuronal damage. Am J Obstet Gynecol 188:413–418

    Article  PubMed  Google Scholar 

  15. de Haan HH, Gunn AJ, Williams CE, Gluckman PD (1997) Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr Res 41:96–104

    Article  PubMed  Google Scholar 

  16. Giussani DA, Spencer JAD, Hanson MA (1994) Fetal and cardiovascular reflex responses to hypoxaemia. Fetal Matern Med Rev 6:17–37

    Article  Google Scholar 

  17. Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reprod Biol 84:155–172

    Article  CAS  PubMed  Google Scholar 

  18. Westgate JA, Wibbens B, Bennet L, Wassink G, Parer JT, Gunn AJ (2007) The intrapartum deceleration in center stage: a physiological approach to interpretation of fetal heart rate changes in labor. Am J Obstet Gynecol 197:e1–e11.236

    PubMed  Google Scholar 

  19. Wassink G, Bennet L, Booth LC, Jensen EC, Wibbens B, Dean JM, Gunn AJ (2007) The ontogeny of hemodynamic responses to prolonged umbilical cord occlusion in fetal sheep. J Appl Physiol 103:1311–1317

    Article  PubMed  Google Scholar 

  20. George S, Gunn AJ, Westgate JA, Brabyn C, Guan J, Bennet L (2004) Fetal heart rate variability and brainstem injury after asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 287:R925–R933

    Article  CAS  PubMed  Google Scholar 

  21. Bennet L, Roelfsema V, Dean J, Wassink G, Power GG, Jensen EC, Gunn AJ (2007) Regulation of cytochrome oxidase redox state during umbilical cord occlusion in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 292:R1569–R1576

    Article  CAS  PubMed  Google Scholar 

  22. Bennet L, Roelfsema V, Pathipati P, Quaedackers J, Gunn AJ (2006) Relationship between evolving epileptiform activity and delayed loss of mitochondrial activity after asphyxia measured by near-infrared spectroscopy in preterm fetal sheep. J Physiol 572:141–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD (1997) Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 99:248–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bennet L, Roelfsema V, George S, Dean JM, Emerald BS, Gunn AJ (2007) The effect of cerebral hypothermia on white and grey matter injury induced by severe hypoxia in preterm fetal sheep. J Physiol 578:491–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Barlow RM (1969) The foetal sheep: morphogenesis of the nervous system and histochemical aspects of myelination. J Comp Neurol 135:249–262

    Article  CAS  PubMed  Google Scholar 

  26. McIntosh GH, Baghurst KI, Potter BJ, Hetzel BS (1979) Foetal brain development in the sheep. Neuropathol Appl Neurobiol 5:103–114

    Article  CAS  PubMed  Google Scholar 

  27. Eshleman JR (1968) Methods used for sterilization or disinfection of instruments. J Dent Educ 32:330–333

    CAS  PubMed  Google Scholar 

  28. Bennet L, Booth LC, Ahmed-Nasef N, Dean JM, Davidson J, Quaedackers JS, Gunn AJ (2007) Male disadvantage? Fetal sex and cardiovascular responses to asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 293:R1280–R1286

    Article  CAS  PubMed  Google Scholar 

  29. Wibbens B, Westgate JA, Bennet L, Roelfsema V, de Haan HH, Hunter CJ, Gunn AJ (2005) Profound hypotension and associated ECG changes during prolonged cord occlusion in the near term fetal sheep. Am J Obstet Gynecol 193:803–810

    Article  PubMed  Google Scholar 

  30. Bennet L, Rossenrode S, Gunning MI, Gluckman PD, Gunn AJ (1999) The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J Physiol 517:247–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ball RH, Espinoza MI, Parer JT, Alon E, Vertommen J, Johnson J (1994) Regional blood flow in asphyxiated fetuses with seizures. Am J Obstet Gynecol 170:156–161

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda T, Murata Y, Quilligan EJ, Parer JT, Theunissen IM, Cifuentes P, Doi S, Park SD (1998) Fetal heart rate patterns in postasphyxiated fetal lambs with brain damage. Am J Obstet Gynecol 179:1329–1337

    Article  CAS  PubMed  Google Scholar 

  33. Hunter CJ, Bennet L, Power GG, Roelfsema V, Blood AB, Quaedackers JS, George S, Guan J, Gunn AJ (2003) Key neuroprotective role for endogenous adenosine A1 receptor activation during asphyxia in the fetal sheep. Stroke 34:2240–2245

    Article  CAS  PubMed  Google Scholar 

  34. Jensen A, Hohmann M, Kunzel W (1987) Dynamic changes in organ blood flow and oxygen consumption during acute asphyxia in fetal sheep. J Dev Physiol 9:543–559

    CAS  PubMed  Google Scholar 

  35. Gunn AJ, Maxwell L, de Haan HH, Bennet L, Williams CE, Gluckman PD, Gunn TR (2000) Delayed hypotension and subendocardial injury after repeated umbilical cord occlusion in near-term fetal lambs. Am J Obstet Gynecol 183:1564–1572

    Article  CAS  PubMed  Google Scholar 

  36. Parer JT (1998) Effects of fetal asphyxia on brain cell structure and function: limits of tolerance. Comp Biochem Physiol A Mol Integr Physiol 119:711–716

    Article  CAS  PubMed  Google Scholar 

  37. Mallard EC, Gunn AJ, Williams CE, Johnston BM, Gluckman PD (1992) Transient umbilical cord occlusion causes hippocampal damage in the fetal sheep. Am J Obstet Gynecol 167:1423–1430

    Article  CAS  PubMed  Google Scholar 

  38. Mallard EC, Williams CE, Johnston BM, Gunning MI, Davis S, Gluckman PD (1995) Repeated episodes of umbilical cord occlusion in fetal sheep lead to preferential damage to the striatum and sensitize the heart to further insults. Pediatr Res 37:707–713

    Article  CAS  PubMed  Google Scholar 

  39. de Haan HH, Gunn AJ, Williams CE, Heymann MA, Gluckman PD (1997) Magnesium sulfate therapy during asphyxia in near-term fetal lambs does not compromise the fetus but does not reduce cerebral injury. Am J Obstet Gynecol 176:18–27

    Article  PubMed  Google Scholar 

  40. de Haan HH, Gunn AJ, Gluckman PD (1997) Fetal heart rate changes do not reflect cardiovascular deterioration during brief repeated umbilical cord occlusions in near-term fetal lambs. Am J Obstet Gynecol 176:8–17

    Article  PubMed  Google Scholar 

  41. Westgate JA, Gunn AJ, Bennet L, Gunning MI, de Haan HH, Gluckman PD (1998) Do fetal electrocardiogram PR-RR changes reflect progressive asphyxia after repeated umbilical cord occlusion in fetal sheep? Pediatr Res 44:297–303

    Article  CAS  PubMed  Google Scholar 

  42. Westgate JA, Bennet L, de Haan HH, Gunn AJ (2001) Fetal heart rate overshoot during repeated umbilical cord occlusion in sheep. Obstet Gynecol 97:454–459

    Article  CAS  PubMed  Google Scholar 

  43. Westgate JA, Bennet L, Brabyn C, Williams CE, Gunn AJ (2001) ST waveform changes during repeated umbilical cord occlusions in near-term fetal sheep. Am J Obstet Gynecol 184:743–751

    Article  CAS  PubMed  Google Scholar 

  44. Torvik A (1984) The pathogenesis of watershed infarcts in the brain. Stroke 15:221–223

    Article  CAS  PubMed  Google Scholar 

  45. Rees S, Mallard C, Breen S, Stringer M, Cock M, Harding R (1998) Fetal brain injury following prolonged hypoxemia and placental insufficiency: a review. Comp Biochem Physiol A Mol Integr Physiol 119:653–660

    Article  CAS  PubMed  Google Scholar 

  46. Ikeda T, Murata Y, Quilligan EJ, Choi BH, Parer JT, Doi S, Park SD (1998) Physiologic and histologic changes in near-term fetal lambs exposed to asphyxia by partial umbilical cord occlusion. Am J Obstet Gynecol 178:24–32

    Article  CAS  PubMed  Google Scholar 

  47. de Haan HH, van Reempts JL, Vles JS, de Haan J, Hasaart TH (1993) Effects of asphyxia on the fetal lamb brain. Am J Obstet Gynecol 169:1493–1501

    Article  PubMed  Google Scholar 

  48. Pulgar VM, Zhang J, Massmann GA, Figueroa JP (2007) Mild chronic hypoxia modifies the fetal sheep neural and cardiovascular responses to repeated umbilical cord occlusion. Brain Res 1176:18–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mallard EC, Williams CE, Gunn AJ, Gunning MI, Gluckman PD (1993) Frequent episodes of brief ischemia sensitize the fetal sheep brain to neuronal loss and induce striatal injury. Pediatr Res 33:61–65

    Article  CAS  PubMed  Google Scholar 

  50. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    Article  CAS  PubMed  Google Scholar 

  52. LeBlanc MH, Huang M, Vig V, Patel D, Smith EE (1993) Glucose affects the severity of hypoxic-ischemic brain injury in newborn pigs. Stroke 24:1055–1062

    Article  CAS  PubMed  Google Scholar 

  53. Wibbens B, Bennet L, Westgate JA, de Haan HH, Wassink G, Gunn AJ (2007) Pre-existing hypoxia is associated with a delayed but more sustained rise in T/QRS ratio during prolonged umbilical cord occlusion in near-term fetal sheep. Am J Physiol Regul Integr Comp Physiol 293:R1287–R1293

    Article  CAS  PubMed  Google Scholar 

  54. Westgate J, Wassink G, Bennet L, Gunn AJ (2005) Spontaneous hypoxia in multiple pregnancy is associated with early fetal decompensation and greater T wave elevation during brief repeated cord occlusion in near-term fetal sheep. Am J Obstet Gynecol 193:1526–1533

    Article  PubMed  Google Scholar 

  55. Shelley HJ (1961) Glycogen reserves and their changes at birth and in anoxia. Br Med Bull 17:137–143

    Google Scholar 

  56. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  CAS  PubMed  Google Scholar 

  57. Hawkins P, Steyn C, McGarrigle HH, Saito T, Ozaki T, Stratford LL, Noakes DE, Hanson MA (2000) Effect of maternal nutrient restriction in early gestation on responses of the hypothalamic-pituitary-adrenal axis to acute isocapnic hypoxaemia in late gestation fetal sheep. Exp Physiol 85:85–96

    Article  CAS  PubMed  Google Scholar 

  58. Gunn AJ, Quaedackers JS, Guan J, Heineman E, Bennet L (2001) The premature fetus: not as defenseless as we thought, but still paradoxically vulnerable? Dev Neurosci 23:175–179

    Article  CAS  PubMed  Google Scholar 

  59. Bennet L, Peebles DM, Edwards AD, Rios A, Hanson MA (1998) The cerebral hemodynamic response to asphyxia and hypoxia in the near- term fetal sheep as measured by near infrared spectroscopy. Pediatr Res 44:951–957

    Article  CAS  PubMed  Google Scholar 

  60. Keunen H, Blanco CE, van Reempts JL, Hasaart TH (1997) Absence of neuronal damage after umbilical cord occlusion of 10, 15, and 20 minutes in midgestation fetal sheep. Am J Obstet Gynecol 176:515–520

    Article  CAS  PubMed  Google Scholar 

  61. Barkovich AJ, Sargent SK (1995) Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 16:1837–1846

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work reported in this review has been supported by the Health Research Council of New Zealand, Lottery Health Board of New Zealand, the Auckland Medical Research Foundation, the National Institutes of Health, and the March of Dimes Birth Defects Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Jan Gunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Drury, P.P., Bennet, L., Booth, L.C., Davidson, J.O., Wassink, G., Gunn, A.J. (2015). Studies of Perinatal Asphyxial Brain Injury in the Fetal Sheep. In: Yager, J. (eds) Animal Models of Neurodevelopmental Disorders. Neuromethods, vol 104. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2709-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2709-8_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2708-1

  • Online ISBN: 978-1-4939-2709-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics