Skip to main content

Small GTPases in Acrosomal Exocytosis

  • Protocol
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1298))

Abstract

Regulated exocytosis employs a conserved molecular machinery in all secretory cells. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Rab superfamilies are members of this machinery. Rab proteins are small GTPases that organize membrane microdomains on organelles by recruiting specific effectors that strongly influence the movement, fusion and fission dynamics of intracellular compartments. Rab3 and Rab27 are the prevalent exocytotic isoforms. Many events occur in mammalian spermatozoa before they can fertilize the egg, one of them is the acrosome reaction (AR), a type of regulated exocytosis. The AR relies on the same fusion machinery as all other cell types, which includes members of the exocytotic SNARE and Rab superfamilies. Here, we describe in depth two protocols designed to determine the activation status of small G proteins. One of them also serves to determine the subcellular localization of active Rabs, something not achievable with other methods. By means of these techniques, we have reported that Rab27 and Rab3 act sequentially and are organized in a RabGEF cascade during the AR. Although we developed them to scrutinize the exocytosis of the acrosome in human sperm, the protocols can potentially be extended to study other Ras-related proteins in virtually any cellular model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rizo J, Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices-guilty as charged? Annu Rev Cell Dev Biol 28:279–308

    Article  CAS  PubMed  Google Scholar 

  3. Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  4. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136

    Article  CAS  PubMed  Google Scholar 

  5. Barr FA (2013) Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biol 202:191–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  PubMed  Google Scholar 

  7. Nottingham RM, Pfeffer SR (2009) Defining the boundaries: Rab GEFs and GAPs. Proc Natl Acad Sci U S A 106:14185–14186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fukuda M (2008) Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci 65:2801–2813

    Article  CAS  PubMed  Google Scholar 

  9. Yanagimachi R (2011) Mammalian sperm acrosome reaction: where does it begin before fertilization? Biol Reprod 85:4–5

    Article  CAS  PubMed  Google Scholar 

  10. Tomes CN (2007) Molecular mechanisms of exocytosis. In: Regazzi R (ed) Molecular mechanisms of membrane fusion during acrosomal exocytosis, 65th edn. Landes Biosciences and Springer Science + Bussiness Media LLC, New York, pp 275–291

    Google Scholar 

  11. Mayorga LS, Tomes CN, Belmonte SA (2007) Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 59:286–292

    Article  CAS  PubMed  Google Scholar 

  12. Florman HM, Jungnickel MK, Sutton KA (2008) Regulating the acrosome reaction. Int J Dev Biol 52:503–510

    Article  CAS  PubMed  Google Scholar 

  13. Visconti PE, Krapf D, de la Vega-Beltran JL et al (2011) Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 13:395–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Costello S, Michelangeli F, Nash K et al (2009) Ca2+-stores in sperm: their identities and functions. Reproduction 138:425–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gadella BM, Luna C (2014) Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology 81:74–84

    Article  CAS  PubMed  Google Scholar 

  16. Buffone MG, Ijiri TW, Cao W et al (2012) Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev 79:4–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Aitken RJ, Nixon B (2013) Sperm capacitation: a distant landscape glimpsed but unexplored. Mol Hum Reprod 19:785–793

    Article  CAS  PubMed  Google Scholar 

  18. Buffone MG, Hirohashi N, Gerton GL (2014) Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol Reprod 90:112

    Article  PubMed  Google Scholar 

  19. Pocognoni CA, De Blas GA, Heuck AP et al (2013) Perfringolysin O as a useful tool to study human sperm physiology. Fertil Steril 99:99–106

    Article  CAS  PubMed  Google Scholar 

  20. Lopez CI, Belmonte SA, De Blas GA et al (2007) Membrane-permeant Rab3A triggers acrosomal exocytosis in living human sperm. FASEB J 21:4121–4130

    Article  CAS  PubMed  Google Scholar 

  21. Yunes R, Tomes C, Michaut M et al (2002) Rab3A and calmodulin regulate acrosomal exocytosis by mechanisms that do not require a direct interaction. FEBS Lett 525:126–130

    Article  CAS  PubMed  Google Scholar 

  22. Branham MT, Bustos MA, De Blas GA et al (2009) Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 284:24825–24839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bustos MA, Lucchesi O, Ruete MC et al (2012) Rab27 and Rab3 sequentially regulate human sperm dense-core granule exocytosis. Proc Natl Acad Sci U S A 109:E2057–E2066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bustos MA, Roggero CM, De la Iglesia PX et al (2014) GTP-bound Rab3A exhibits consecutive positive and negative roles during human sperm dense-core granule exocytosis. J Mol Cell Biol 6:286–298

    Article  CAS  PubMed  Google Scholar 

  25. Ruete MC, Lucchesi O, Bustos MA et al (2014) Epac, Rap and Rab3 act in concert to mobilize calcium from sperm's acrosome during exocytosis. Cell Commun Signal 12:43

    PubMed Central  PubMed  Google Scholar 

  26. Lopez CI, Pelletan LE, Suhaiman L et al (2012) Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKC- and PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochim Biophys Acta 1821:1186–1199

    Article  CAS  PubMed  Google Scholar 

  27. Coppola T, Perret-Menoud V, Luthi S et al (1999) Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J 18:5885–5891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kondo H, Shirakawa R, Higashi T et al (2006) Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity for Rab27 in platelets. J Biol Chem 281:28657–28665

    Article  CAS  PubMed  Google Scholar 

  29. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  30. Sekiya K, Satoh R, Danbara H et al (1993) A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol 175:5953–5961

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Sekiya K, Danbara H, Futaesaku Y (1993) Mechanism of pore formation on erythrocyte membrane by streptolysin-O. Kansenshogaku Zasshi 67:736–740

    Article  CAS  PubMed  Google Scholar 

  32. Sekiya K (1995) Electron-microscopic observation of pore formation in the erythrocyte membrane by streptolysin O. Nihon Saikingaku Zasshi 50:509–517

    Article  CAS  PubMed  Google Scholar 

  33. Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    PubMed Central  CAS  PubMed  Google Scholar 

  34. World Health Organization Department of Reproductive Health and Research (2010) WHO laboratory manual for the examination and processing of human semen. WHO Press, Geneva

    Google Scholar 

  35. Makler A (1980) The improved ten-micrometer chamber for rapid sperm count and motility evaluation. Fertil Steril 33:337–338

    CAS  PubMed  Google Scholar 

  36. Mendoza C, Carreras A, Moos J et al (1992) Distinction between true acrosome reaction and degenerative acrosome loss by a one-step staining method using Pisum sativum agglutinin. J Reprod Fertil 95:755–763

    Article  CAS  PubMed  Google Scholar 

  37. Burstein ES, Macara IG (1992) Interactions of the ras-like protein p25rab3A with Mg2+ and guanine nucleotides. Biochem J 282:387–392

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (grant numbers PICT 2006-1036 and PICT 2010-0342) and Secretaría de Ciencia, Técnica y Posgrado, Universidad Nacional de Cuyo to C.N.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis S. Mayorga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bustos, M.A., Lucchesi, O., Ruete, M.C., Mayorga, L.S., Tomes, C.N. (2015). Small GTPases in Acrosomal Exocytosis. In: Li, G. (eds) Rab GTPases. Methods in Molecular Biology, vol 1298. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2569-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2569-8_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2568-1

  • Online ISBN: 978-1-4939-2569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics