Skip to main content

Structure-Based, In Silico Approaches for the Development of Novel cAMP FRET Reporters

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1294))

Abstract

A significant contribution to the research in cAMP signaling has been made by the development of genetically encoded FRET sensors that allow detection of local concentrations of second messengers in living cells. Nowadays, the availability of a number of 3D structures of cyclic nucleotide-binding domains (CNBD) undergoing conformational transitions upon cAMP binding, along with computational tools, can be exploited for the design of novel or improved sensors. In this chapter we will overview some coarse-grained geometrical considerations on fluorescent proteins, CNBD, and linker peptides to draw simple qualitative rules that may aid the design of novel sensors. Finally, we will illustrate how the application of these simple rules can be used to describe the mechanistic basis of cAMP sensors reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, text in italics contains practical information that the reader may find particularly useful if they intend to apply this approach.

References

  1. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  2. Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781

    Article  CAS  PubMed  Google Scholar 

  3. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721

    Article  CAS  PubMed  Google Scholar 

  5. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lakowicz JR (1999) Energy transfer. Fluorescence spectroscopy. Kluwer Academic/Plenum, New York, pp 368–391

    Google Scholar 

  7. Sipieter F, Vandame P, Spriet C et al (2013) From FRET imaging to practical methodology for kinase activity sensing in living cells. Prog Mol Biol Transl Sci 113:145–216

    Article  CAS  PubMed  Google Scholar 

  8. Hsin J, Arkhipov A, Yin Y et al. (2008) Using VMD: an introductory tutorial. Curr Protoc Bioinformat Chapter 5, Unit 5.7

    Google Scholar 

  9. Taylor SS, Ilouz R, Zhang P et al (2012) Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 13:646–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhang P, Smith-Nguyen EV, Keshwani MM et al (2012) Structure and allostery of the PKA RIIbeta tetrameric holoenzyme. Science 335:712–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Berman HM, Ten Eyck LF, Goodsell DS et al (2005) The cAMP binding domain: an ancient signaling module. Proc Natl Acad Sci U S A 102:45–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rehmann H, Arias-Palomo E, Hadders MA et al (2008) Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 455:124–127

    Article  CAS  PubMed  Google Scholar 

  13. Berrera M, Pantano S, Carloni P (2007) Catabolite activator protein in aqueous solution: a molecular simulation study. J Phys Chem B 111:1496–1501

    Article  CAS  PubMed  Google Scholar 

  14. Berrera M, Pantano S, Carloni P (2006) cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations. Biophys J 90:3428–3433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pantano S, Zaccolo M, Carloni P (2005) Molecular basis of the allosteric mechanism of cAMP in the regulatory PKA subunit. FEBS Lett 579:2679–2685

    Article  CAS  PubMed  Google Scholar 

  16. Pantano S (2008) In silico description of fluorescent probes in vivo. J Mol Graph Model 27:563–567

    Article  CAS  PubMed  Google Scholar 

  17. Nikolaev VO, Bunemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  18. Ansbacher T, Srivastava HK, Stein T et al (2012) Calculation of transition dipole moment in fluorescent proteins–towards efficient energy transfer. Phys Chem Chem Phys 14:4109–4117

    Article  CAS  PubMed  Google Scholar 

  19. Topell S, Glockshuber R (2002) Circular permutation of the green fluorescent protein. Methods Mol Biol 183:31–48

    CAS  PubMed  Google Scholar 

  20. Rief M, Oesterhelt F, Heymann B et al (1997) Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science 275:1295–1297

    Article  CAS  PubMed  Google Scholar 

  21. Carrion-Vazquez M, Oberhauser AF, Fowler SB et al (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci U S A 96:3694–3699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Flory PJ (1975) Spatial configuration of macromolecular chains. Science 188:1268–1276

    Article  CAS  PubMed  Google Scholar 

  23. Di BG, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844

    Article  Google Scholar 

  24. Zaccolo M, De GF, Cho CY et al (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    Article  CAS  PubMed  Google Scholar 

  25. Diller TC, Madhusudan, Xuong NH et al. (2001) Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure 9, 73–82

    Google Scholar 

  26. Smith FD, Reichow SL, Esseltine JL et al (2013) Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation. Elife 2:e01319

    PubMed Central  PubMed  Google Scholar 

  27. Lissandron V, Terrin A, Collini M et al (2005) Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction. J Mol Biol 354:546–555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by FOCEM (MERCOSUR Structural Convergence Fund), COF 03/11, and Intramural Transversal Program 2013, Institut Pasteur de Montevideo. M.M and S.P are members of the SNI, ANII, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Pantano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Machado, M., Pantano, S. (2015). Structure-Based, In Silico Approaches for the Development of Novel cAMP FRET Reporters. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 1294. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2537-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2537-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2536-0

  • Online ISBN: 978-1-4939-2537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics