Skip to main content

Development of Computational Models of cAMP Signaling

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1294))

Abstract

Despite the growing evidence defining the cAMP signaling network as a master regulator of cellular function in a number of tissues, regulatory feedback loops, signal compartmentalization, as well as cross-talk with other signaling pathways make understanding the emergent properties of cAMP cellular action a daunting task. Dynamical models of signaling that combine quantitative rigor with molecular details can contribute valuable mechanistic insight into the complexity of intracellular cAMP signaling by complementing and guiding experimental efforts. In this chapter, we review the development of cAMP computational models. We describe how features of the cAMP network can be represented and review the types of experimental data useful in modeling cAMP signaling. We also compile a list of published cAMP models that can aid in the development of novel dynamical models of cAMP signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342

    Article  CAS  PubMed  Google Scholar 

  2. Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Daniel PB, Walker WH, Habener JF (1998) Cyclic AMP signaling and gene regulation. Annu Rev Nutr 18:353–383

    Article  CAS  PubMed  Google Scholar 

  4. Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  CAS  PubMed  Google Scholar 

  5. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    CAS  PubMed  Google Scholar 

  6. Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375

    Article  CAS  PubMed  Google Scholar 

  7. Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    Article  CAS  PubMed  Google Scholar 

  8. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  9. Conti M, Mika D, Richter W (2014) Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol 143:29–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    Article  CAS  PubMed  Google Scholar 

  11. Karpen JW (2014) Perspectives on: cyclic nucleotide microdomains and signaling specificity. J Gen Physiol 143:5–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kapiloff MS, Rigatti M, Dodge-Kafka KL (2014) Architectural and functional roles of A kinase-anchoring proteins in cAMP microdomains. J Gen Physiol 143:9–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Neves SR, Tsokas P, Sarkar A et al (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:666–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rich TC, Webb KJ, Leavesley SJ (2014) Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 143:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Saucerman JJ, Greenwald EC, Polanowska-Grabowska R (2014) Mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol 143:39–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Calebiro D, Nikolaev VO, Gagliani MC et al (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172

    Article  PubMed Central  PubMed  Google Scholar 

  17. Song RS, Massenburg B, Wenderski W et al (2013) ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion. Proc Natl Acad Sci U S A 110:15437–15442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Aldridge BB, Burke JM, Lauffenburger DA et al (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203

    Article  CAS  PubMed  Google Scholar 

  19. Greenwald EC, Polanowska-Grabowska RK, Saucerman JJ (2014) Integrating fluorescent biosensor data using computational models. Methods Mol Biol 1071:227–248

    Article  PubMed  Google Scholar 

  20. Chen W, Levine H, Rappel WJ (2009) Compartmentalization of second messengers in neurons: a mathematical analysis. Phys Rev E Stat Nonlin Soft Matter Phys 80:041901

    Article  PubMed  Google Scholar 

  21. Bhalla US (2004) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 87:733–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bhalla US (2004) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 87:745–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sample V, DiPilato LM, Yang JH et al (2012) Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat Chem Biol 8:375–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Iancu RV, Jones SW, Harvey RD (2007) Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 92:3317–3331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oliveira RF, Kim M, Blackwell KT (2012) Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites. PLoS Comput Biol 8:e1002383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672

    Article  CAS  PubMed  Google Scholar 

  27. Blackwell KT (2013) Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods 220:131–140

    Article  CAS  PubMed  Google Scholar 

  28. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79:1277–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17:5–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  CAS  PubMed  Google Scholar 

  31. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387

    Article  CAS  PubMed  Google Scholar 

  32. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  CAS  PubMed  Google Scholar 

  33. Taylor SS, Zhang P, Steichen JM et al (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834:1271–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005

    Article  CAS  PubMed  Google Scholar 

  35. Dostmann WR, Taylor SS (1991) Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. Biochemistry 30:8710–8716

    Article  CAS  PubMed  Google Scholar 

  36. Ogreid D, Doskeland SO (1983) Cyclic nucleotides modulate the release of [3H] adenosine cyclic 3′,5′-phosphate bound to the regulatory moiety of protein kinase I by the catalytic subunit of the kinase. Biochemistry 22:1686–1696

    Article  CAS  PubMed  Google Scholar 

  37. Ni Q, Ganesan A, Aye-Han NN et al (2011) Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol 7:34–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kim M, Huang T, Abel T et al (2010) Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS Comput Biol 6:e1000691

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol BioSyst 3:759–765

    Article  CAS  PubMed  Google Scholar 

  40. Harvey CD, Yasuda R, Zhong H et al (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321:136–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lam AJ, St-Pierre F, Gong Y et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Klarenbeek JB, Goedhart J, Hink MA et al (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:e19170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sprenger JU, Nikolaev VO (2013) Biophysical techniques for detection of cAMP and cGMP in living cells. Int J Mol Sci 14:8025–8046

    Article  PubMed Central  PubMed  Google Scholar 

  45. Stangherlin A, Koschinski A, Terrin A et al (2014) Analysis of compartmentalized cAMP: a method to compare signals from differently targeted FRET reporters. Methods Mol Biol 1071:59–71

    Article  PubMed  Google Scholar 

  46. Borner S, Schwede F, Schlipp A et al (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438

    Article  PubMed  Google Scholar 

  47. Mironov SL, Skorova E, Taschenberger G et al (2009) Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neurosci 10:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Nausch LW, Ledoux J, Bonev AD et al (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci U S A 105:365–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Dempsher DP, Gann DS, Phair RD (1984) A mechanistic model of ACTH-stimulated cortisol secretion. Am J Physiol 246:R587–R596

    CAS  PubMed  Google Scholar 

  50. Rich TC, Fagan KA, Nakata H et al (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rich TC, Fagan KA, Tse TE et al (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci U S A 98:13049–13054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Saucerman JJ, Brunton LL, Michailova AP et al (2003) Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 278:47997–48003

    Article  CAS  PubMed  Google Scholar 

  53. Ajay SM, Bhalla US (2004) A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. Eur J Neurosci 20:2671–2680

    Article  PubMed  Google Scholar 

  54. Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput Biol 1:137–154

    Article  CAS  PubMed  Google Scholar 

  55. Rich TC, Xin W, Mehats C et al (2007) Cellular mechanisms underlying prostaglandin-induced transient cAMP signals near the plasma membrane of HEK-293 cells. Am J Physiol Cell Physiol 292:C319–C331

    Article  CAS  PubMed  Google Scholar 

  56. Saucerman JJ, Zhang J, Martin JC et al (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci U S A 103:12923–12928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Fernandez E, Schiappa R, Girault JA et al (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176

    Article  PubMed Central  PubMed  Google Scholar 

  58. Fridlyand LE, Harbeck MC, Roe MW et al (2007) Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol Cell Physiol 293:C1924–C1933

    Article  CAS  PubMed  Google Scholar 

  59. Violin JD, DiPilato LM, Yildirim N et al (2008) beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283:2949–2961

    Article  CAS  PubMed  Google Scholar 

  60. Cygnar KD, Zhao H (2009) Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci 12:454–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Nakano T, Doi T, Yoshimoto J et al (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6:e1000670

    Article  PubMed Central  PubMed  Google Scholar 

  62. Oliveira RF, Terrin A, Di Benedetto G et al (2010) The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 5:e11725

    Article  PubMed Central  PubMed  Google Scholar 

  63. Heijman J, Volders PG, Westra RL et al (2011) Local control of beta-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca(2+)-transient. J Mol Cell Cardiol 50:863–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Xie M, Rich TC, Scheitrum C et al (2011) Inactivation of multidrug resistance proteins disrupts both cellular extrusion and intracellular degradation of cAMP. Mol Pharmacol 80:281–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kim M, Park AJ, Havekes R et al (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 7:e1002084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Fridlyand LE, Philipson LH (2011) Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. Prog Biophys Mol Biol 107:293–303

    Article  CAS  PubMed  Google Scholar 

  67. Feinstein WP, Zhu B, Leavesley SJ et al (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302:C839–C852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Azeloglu EU, Hardy SV, Eungdamrong NJ et al (2014) Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 7:ra12

    Article  PubMed Central  PubMed  Google Scholar 

  69. Agarwal SR, Yang PC, Rice M et al (2014) Role of membrane microdomains in compartmentation of cAMP signaling. PLoS One 9:e95835

    Article  PubMed Central  PubMed  Google Scholar 

  70. Lindskog M, Kim M, Wikstrom MA et al (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2:e119

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana R. Neves-Zaph Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neves-Zaph, S.R., Song, R.S. (2015). Development of Computational Models of cAMP Signaling. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 1294. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2537-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2537-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2536-0

  • Online ISBN: 978-1-4939-2537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics