Skip to main content

Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

Abstract

The crucial role of phenotypic heterogeneity in bacterial physiology and adaptive responses has required the introduction of new ways to investigate bacterial individuality. Time-lapse microscopy is a powerful technique for evaluating phenotypic diversity in bacteria at the single-cell level, whether exploring the dynamics of gene expression and protein localization or characterizing the heterogeneous phenotypic response to perturbations. Here, we present protocols to carry out time-lapse imaging of mycobacteria at the single-cell level using either agarose pads or customized microfluidic devices. The sequences of images obtained can be analyzed using programs such as ImageJ and allow the investigator not only to extract various parameters of growth and gene expression dynamics but also to unravel the physiological basis behind phenomenon such as persistence against stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  CAS  PubMed  Google Scholar 

  2. Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10:30–38

    Article  CAS  PubMed  Google Scholar 

  3. Balaban NQ, Merrin J, Chait R et al (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  4. Eldar A, Chary VK, Xenopoulos P et al (2009) Partial penetrance facilitates developmental evolution in bacteria. Nature 460:510–514

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Locke JC, Young JW, Fontes M et al (2011) Stochastic pulse regulation in bacterial stress response. Science 334:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Norman TM, Lord ND, Paulsson J et al (2013) Memory and modularity in cell-fate decision making. Nature 503:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rotem E, Loinger A, Ronin I et al (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107:12541–12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wakamoto Y, Dhar N, Chait R et al (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95

    Article  CAS  PubMed  Google Scholar 

  10. Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ackermann M, Stearns SC, Jenal U (2003) Senescence in a bacterium with asymmetric division. Science 300:1920

    Article  CAS  PubMed  Google Scholar 

  12. de Jong IG, Beilharz K, Kuipers OP, Veening J-W (2011) Live cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J Vis Exp 53:e3145

    Google Scholar 

  13. Golding I, Paulsson J, Zawilski SM et al (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–1036

    Article  CAS  PubMed  Google Scholar 

  14. Lindner AB, Madden R, Demarez A et al (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105:3076–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Llopis PM, Jackson AF, Sliusarenko O et al (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466:77–81

    Article  CAS  PubMed Central  Google Scholar 

  16. Locke JCW, Elowitz MB (2009) Using movies to analyse gene circuit dynamics in single cells. Nat Rev Micro 7:383–392

    Article  CAS  Google Scholar 

  17. Stewart EJ, Madden R, Paul G et al (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol 3:e45

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang P, Robert L, Pelletier J et al (2010) Robust growth of Escherichia coli. Curr Biol 20:1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Young JW, Locke JC, Altinok A et al (2012) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc 7:80–88

    Article  CAS  Google Scholar 

  20. Aldridge BB, Fernandez-Suarez M, Heller D et al (2012) Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–104

    Article  CAS  PubMed  Google Scholar 

  21. Golchin SA, Stratford J, Curry RJ et al (2012) A microfluidic system for long-term time-lapse microscopy studies of mycobacteria. Tuberculosis (Edinb) 92:489–496

    Article  Google Scholar 

  22. Joyce G, Williams KJ, Robb M et al (2012) Cell division site placement and asymmetric growth in mycobacteria. PLoS One 7:e44582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joyce G, Robertson BD, Williams KJ (2011) A modified agar pad method for mycobacterial live-cell imaging. BMC Res Notes 4:73

    Google Scholar 

  24. Makarov V, Manina G, Mikusova K et al (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sala C, Dhar N, Hartkoorn RC et al (2010) Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 54:4150–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santi I, Dhar N, Bousbaine D et al (2013) Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat Commun 4:2470. doi:10.1038/ncomms3470

    PubMed  Google Scholar 

  27. Singh B, Nitharwal RG, Ramesh M et al (2013) Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol Microbiol 88:64–76

    Article  CAS  PubMed  Google Scholar 

  28. Vijay S, Nagaraja M, Sebastian J et al (2014) Asymmetric cell division in Mycobacterium tuberculosis and its unique features. Arch Microbiol 196:157–168

    Article  CAS  PubMed  Google Scholar 

  29. Hett EC, Rubin EJ (2008) Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72:126–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:026502

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weibel DB, Diluzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Micro 5:209–218

    Article  CAS  Google Scholar 

  32. Whitesides G, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  PubMed  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  34. de Chaumont F, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  PubMed  Google Scholar 

  35. Carpenter AE, Jones TR, Lamprecht MR et al (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sliusarenko O, Heinritz J, Emonet T et al (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80:612–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Niemi J, Tan C-M et al (2010) Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytometry A 77:101–110

    PubMed  PubMed Central  Google Scholar 

  38. Patino S, Alamo L, Cimino M et al (2008) Autofluorescence of mycobacteria as a tool for detection of Mycobacterium tuberculosis. J Clin Microbiol 46:3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dhar, N., Manina, G. (2015). Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy. In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics