Skip to main content

In Vitro and In Vivo Methodologies for Studying the Sigma 54-Dependent Transcription

  • Protocol
  • First Online:
Bacterial Transcriptional Control

Abstract

Here we describe approaches and methods to assaying in vitro the major variant bacterial sigma factor, Sigma 54 (σ54), in a purified system. We include the complete transcription system, binding interactions between σ54 and its activators, as well as the self-assembly and the critical ATPase activity of the cognate activators which serve to remodel the closed promoter complexes. We also present in vivo methodologies that are used to study the impact of physiological processes, metabolic states, global signalling networks, and cellular architecture on the control of σ54-dependent gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joly N, Zhang N, Buck M (2012) ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator. Mol Cell 47:484–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Joly N, Engl C, Jovanovic G et al (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34:797–827

    CAS  PubMed  Google Scholar 

  3. Jovanovic M, James EH, Burrows PC et al (2011) Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat Commun 2:177

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rappas M, Schumacher J, Beuron F et al (2005) Structural insights into the activity of enhancer-binding proteins. Science 307:1972–1975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bose D, Pape T, Burrows PC et al (2008) Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 32:337–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Burrows PC, Joly N, Cannon WV et al (2009) Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. J Mol Biol 387:306–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sysoeva TA, Chowdhury S, Guo L et al (2013) Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis. Genes Dev 27:2500–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mehta P, Jovanovic G, Lenn T et al (2013) Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 4:1997

    Article  PubMed Central  PubMed  Google Scholar 

  9. Belogurov GA, Vassylyeva MN, Svetlov V et al (2007) Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 26:117–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sasse-Dwight S, Gralla JD (1990) Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor sigma 54. Cell 62:945–954

    Article  CAS  PubMed  Google Scholar 

  11. Joly N, Schumacher J, Buck M (2006) Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. J Biol Chem 281:34997–35007

    Article  CAS  PubMed  Google Scholar 

  12. Kassavetis GA, Elliott T, Rabussay DP et al (1983) Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Cell 33:887–897

    Article  CAS  PubMed  Google Scholar 

  13. Vassylyev DG, Vassylyeva MN, Zhang J et al (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163–168

    Article  CAS  PubMed  Google Scholar 

  14. Nash HA, Robertson CA, Flamm E et al (1987) Overproduction of Escherichia coli integration host factor, a protein with nonidentical subunits. J Bacteriol 169:4124–4127

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Cannon WV, Gallegos MT, Buck M (2000) Isomerization of a binary sigma-promoter DNA complex by transcription activators. Nat Struct Biol 7:594–601

    Article  CAS  PubMed  Google Scholar 

  16. Cannon WV, Schumacher J, Buck M (2004) Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein. Nucleic Acids Res 32:4596–4608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chen B, Sysoeva TA, Chowdhury S et al (2009) ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli. FEBS J 276:807–815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Babst M, Wendland B, Estepa EJ et al (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Schumacher J, Zhang X, Jones S et al (2004) ATP-dependent transcriptional activation by bacterial PspF AAA+ protein. J Mol Biol 338:863–875

    Article  CAS  PubMed  Google Scholar 

  20. Schumacher J, Joly N, Claeys-Bouuaert IL et al (2008) Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. J Mol Biol 381:1–12

    Article  CAS  PubMed  Google Scholar 

  21. Schumacher J, Joly N, Rappas M et al (2007) Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. J Biol Chem 282:9825–9833

    Article  CAS  PubMed  Google Scholar 

  22. Norby JG (1998) Coupled assay of Na+, K+-ATPase activity. Methods Enzymol 156:116–119

    Article  Google Scholar 

  23. Sarkar G, Edery I, Sonenberg N (1985) Photoaffinity labeling of the cap-binding protein complex with ATP/dATP. Differential labeling of free eukaryotic initiation factor 4A and the eukaryotic initiation factor 4A component of the cap-binding protein complex with [alpha-32P]ATP/dATP. J Biol Chem 260:13831–13837

    CAS  PubMed  Google Scholar 

  24. Burrows PC, Wigneshweraraj SR, Buck M (2008) Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. J Mol Biol 375:43–58

    Article  CAS  PubMed  Google Scholar 

  25. Zhang N, Joly N, Buck M (2012) A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements. Nucleic Acids Res 40:9139–9152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  28. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR 409 cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14

    Article  CAS  PubMed  Google Scholar 

  29. Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–246

    Article  CAS  PubMed  Google Scholar 

  30. Yakovleva GM, Kim SK, Wanner BL (1998) Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli. Appl Microbiol Biotechnol 49:573–578

    Article  CAS  PubMed  Google Scholar 

  31. Sarkar N, Cao GJ, Jain C (2002) Identification of multicopy suppressors of the pcnB plasmid copy number defect in Escherichia coli. Mol Genet Genomics 268:62–69

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Gralla JD (1998) Multiple in vivo roles for the −12-region elements of Sigma 54 promoters. J Bacteriol 180:5626–5631

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96

    Article  CAS  PubMed  Google Scholar 

  34. Silva-Rocha R, Martínez-García E, Calles B et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:666–675

    Article  Google Scholar 

  35. Karimova G, Pidoux J, Ullmann A et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  38. Lenn T, Gkekas CN, Bernard L et al (2011) Measuring the stoichiometry of functional PspA complexes in living bacterial cells by single molecule photobleaching. Chem Commun 47:400–402

    Article  CAS  Google Scholar 

  39. Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40:71–86

    Article  CAS  PubMed  Google Scholar 

  40. Kuo SC, Gelles J, Steuer E et al (1991) A model for kinesin movement from nanometer level movements of kinesin and cytoplasmic dynein and force measurements. J Cell Sci 14:135–138

    Article  CAS  Google Scholar 

  41. Lenn T, Leake MC, Mullineaux CW (2008) Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol Microbiol 70:1397–1407

    Article  CAS  PubMed  Google Scholar 

  42. Schumacher J, Joly N, Rappas M et al (2006) Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 156:190–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by BBSRC (BB/J002828/1), Wellcome Trust (WT093044MA), and Leverhulme Trust (F/07 058/BM) project grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Buck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Buck, M. et al. (2015). In Vitro and In Vivo Methodologies for Studying the Sigma 54-Dependent Transcription. In: Artsimovitch, I., Santangelo, T. (eds) Bacterial Transcriptional Control. Methods in Molecular Biology, vol 1276. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2392-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2392-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2391-5

  • Online ISBN: 978-1-4939-2392-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics