Skip to main content

Purification of Active RNA Polymerase I from Yeast

  • Protocol
  • First Online:
Bacterial Transcriptional Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1276))

Abstract

Eukaryotic cells employ at least three nuclear, DNA-dependent RNA polymerase systems for the synthesis of cellular RNA. RNA polymerases I, II, and III primarily produce rRNA, mRNA, and tRNA, respectively. In a rapidly growing cell, most RNA synthesis is devoted to production of the translation machinery, with rRNA synthesis by RNA polymerase I representing more than half of total cellular transcription. The fundamental connection between ribosome biogenesis and cell growth is clear; furthermore, recent studies have identified transcription by RNA polymerase I as a key target for anticancer chemotherapy. Thus, efficient methods for characterizing transcription of the ribosomal DNA and its regulation are needed. In order to describe enzymatic features of an enzyme, in vitro assays are critical. Here we describe a method for purifying RNA polymerase I. This approach yields enzyme of sufficiently high quantity and activity for an array of experiments directed at describing the enzymatic properties of RNA polymerase I in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152:1237–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Johnson KA (2010) The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim Biophys Acta 1804:1041–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tsai YC, Johnson KA (2006) A new paradigm for DNA polymerase specificity. Biochemistry 45:9675–9687

    Article  CAS  PubMed  Google Scholar 

  4. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  CAS  PubMed  Google Scholar 

  5. Schneider DA (2012) RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 493:176–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Viktorovskaya OV, Engel KL, French SL et al (2013) Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II. Cell Rep 4:974–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Roeder RG, Rutter WJ (1969) Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:234–237

    Article  CAS  PubMed  Google Scholar 

  8. Roeder RG, Rutter WJ (1970) Specific nucleolar and nucleoplasmic RNA polymerases. Proc Natl Acad Sci U S A 65:675–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Vannini A, Cramer P (2012) Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 45:439–446

    Article  CAS  PubMed  Google Scholar 

  10. Geiger SR, Lorenzen K, Schreieck A et al (2010) RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol Cell 39:583–594

    Article  CAS  PubMed  Google Scholar 

  11. Ruan W, Lehmann E, Thomm M et al (2011) Evolution of two modes of intrinsic RNA polymerase transcript cleavage. J Biol Chem 286:18701–18707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bywater MJ, Poortinga G, Sanij E et al (2012) Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22:51–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Drygin D, Lin A, Bliesath J et al (2011) Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 71:1418–1430

    Article  CAS  PubMed  Google Scholar 

  14. Pianese G (1896) Beitrag zur Histologie und Aetiologie der Carcinoma: Histologische und experimentelle Untersuchungen. Beitr Pathol Anat Allgem Pathol 142:1–193

    Google Scholar 

  15. Rudra D, Warner JR (2004) What better measure than ribosome synthesis? Genes Dev 18:2431–2436

    Article  CAS  PubMed  Google Scholar 

  16. Hannan RD, Drygin D, Pearson RB (2013) Targeting RNA polymerase I transcription and the nucleolus for cancer therapy. Expert Opin Ther Targets 17:873–878

    Article  CAS  PubMed  Google Scholar 

  17. Grummt I (2003) Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17:1691–1702

    Article  CAS  PubMed  Google Scholar 

  18. Nomura M, Nogi Y, Oakes M (2004) Transcription of rDNA in the yeast Saccharomyces cerevisiae. In: Olson MOJ (ed) The nucleolus. Kluwer Academic, London, pp 128–153

    Google Scholar 

  19. Keener JJC, Dodd JA, Nomura M (1998) Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem 273:33795–33802

    Article  CAS  PubMed  Google Scholar 

  20. Neugebauer KM (2002) On the importance of being co-transcriptional. J Cell Sci 115:3865–3871

    Article  CAS  PubMed  Google Scholar 

  21. Schneider DA, Michel A, Sikes ML et al (2007) Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 26:217–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schneider DA (2012) Quantitative analysis of transcription elongation by RNA polymerase I in vitro. Methods Mol Biol 809:579–591

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Smith AD, Renfrow MB et al (2010) The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J Biol Chem 285:14152–14159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kuhn CD, Geiger SR, Baumli S et al (2007) Functional architecture of RNA polymerase I. Cell 131:1260–1272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the UAB Fermentation Facility for continual support in cell growth and harvesting. This work is supported by the National Institutes of Health grant #GM84946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alan Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Appling, F.D., Schneider, D.A. (2015). Purification of Active RNA Polymerase I from Yeast. In: Artsimovitch, I., Santangelo, T. (eds) Bacterial Transcriptional Control. Methods in Molecular Biology, vol 1276. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2392-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2392-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2391-5

  • Online ISBN: 978-1-4939-2392-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics