Skip to main content

Single-Cell Electroporation for In Vivo Imaging of Neuronal Morphology and Growth Dynamics

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

  • 2140 Accesses

Abstract

Single-cell electroporation (SCE) is a technique for acutely transfecting or dye-labeling individual neurons within intact living tissues. In addition to fluorescently labeling neurons, SCE can be used to conduct cell-autonomous studies of protein function by co-delivering fluorophores with DNA, RNA, antisense constructs, peptides, proteins, or drugs. SCE involves inserting a thin glass pipette into neural tissue to restrict an electric field and exposure to a solution of delivery compounds to an individual neuron at the pipette tip. Application of a brief electric pulse induces transient pores in the target cell and iontophoretic transfer of delivery compounds only to that cell. SCE is not limited to specific cell types and leaves no residual delivery agents. SCE has proven to be useful for in vivo fluorescent imaging of neuronal morphology and connectivity and for conducting time-lapse imaging of structural changes due to growth and plasticity. Furthermore, “targeted SCE” allows selecting neurons based on connectivity, protein expression, activity patterns, or receptive field properties. Overall, SCE offers a relatively simple and highly versatile alternative to transgenic approaches for acutely labeling or transfecting post-differentiated neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan JL, Lichtman JW (2013) Why not connectomics? Nat Methods 10:494–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174

    Article  CAS  PubMed  Google Scholar 

  3. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  4. Wu GY, Cline HT (2003) Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons. J Comp Neurol 459:392–406

    Article  PubMed  Google Scholar 

  5. Wu GY, Zou DJ, Rajan I, Cline H (1999) Dendritic dynamics in vivo change during neuronal maturation. J Neurosci 19:4472–4483

    CAS  PubMed  Google Scholar 

  6. Hossain S, Hewapathirane DS, Haas K (2012) Dynamic morphometrics reveals contributions of dendritic growth cones and filopodia to dendritogenesis in the intact and awake embryonic brain. Dev Neurobiol 72:615–627

    Article  PubMed  Google Scholar 

  7. Chen BE, Lendvai B, Nimchinsky EA, Burbach B, Fox K, Svoboda K (2000) Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn Mem 7:433–441

    Article  CAS  PubMed  Google Scholar 

  8. Chen SX, Cherry A, Tari PK, Podgorski K, Kwong YK, Haas K (2012) The transcription factor MEF2 directs developmental visually driven functional and structural metaplasticity. Cell 151:41–55

    Article  CAS  PubMed  Google Scholar 

  9. Chen SX, Tari PK, She K, Haas K (2010) Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo. Neuron 67:967–983

    Article  CAS  PubMed  Google Scholar 

  10. Liu XF, Tari PK, Haas K (2009) PKM zeta restricts dendritic arbor growth by filopodial and branch stabilization within the intact and awake developing brain. J Neurosci 29:12229–12235

    Article  CAS  PubMed  Google Scholar 

  11. Karra D, Dahm R (2010) Transfection techniques for neuronal cells. J Neurosci 30:6171–6177

    Article  CAS  PubMed  Google Scholar 

  12. Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591

    Article  CAS  PubMed  Google Scholar 

  13. Hewapathirane DS, Haas K (2008) Single cell electroporation in vivo within the intact developing brain. Journal of Visualized Experiments 17:705

    Google Scholar 

  14. Liu XF, Haas K (2011) Single-cell electroporation in Xenopus. Cold Spring Harb Protoc 9:pii:pdb.top065607

    Google Scholar 

  15. Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:475–480

    Article  CAS  PubMed  Google Scholar 

  16. Sorensen SA, Rubel EW (2006) The level and integrity of synaptic input regulates dendrite structure. J Neurosci 26:1539–1550

    Article  CAS  PubMed  Google Scholar 

  17. Bestman JE, Cline HT (2009) The relationship between dendritic branch dynamics and CPEB-labeled RNP granules captured in vivo. Front Neural Circuit 3:10

    Article  Google Scholar 

  18. Shen W, Da Silva JS, He H, Cline HT (2009) Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo. J Neurosci 29:5032–5043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT (2008) Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J Neurosci 28:850–861

    Article  CAS  PubMed  Google Scholar 

  20. Sorensen SA, Rubel EW (2011) Relative input strength rapidly regulates dendritic structure of chick auditory brainstem neurons. J Comp Neurol 519:2838–2851

    Article  PubMed Central  PubMed  Google Scholar 

  21. Haas K, Li J, Cline HT (2006) AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proc Natl Acad Sci U S A 103:12127–12131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Poulain FE, Gaynes JA, Stacher Horndli C, Law MY, Chien CB (2010) Analyzing retinal axon guidance in zebrafish. Methods Cell Biol 100:3–26

    CAS  PubMed  Google Scholar 

  23. Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16:349–362

    Article  CAS  PubMed  Google Scholar 

  24. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura H, Funahashi J (2001) Introduction of DNA into chick embryos by in ovo electroporation. Methods 24:43–48

    Article  CAS  PubMed  Google Scholar 

  26. Bilska AO, DeBruin KA, Krassowska W (2000) Theoretical modeling of the effects of shock duration, frequency, and strength on the degree of electroporation. Bioelectrochemistry 51:133–143

    Article  CAS  PubMed  Google Scholar 

  27. DeBruin KA, Krassowska W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J 67:42–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    Article  CAS  PubMed  Google Scholar 

  30. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo – from single cells to the entire brain. Differ Res Biol Divers 70:148–154

    Article  CAS  Google Scholar 

  31. Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T (1996) Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. Biophys J 71:868–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Podgorski K, Terpetschnig E, Klochko OP, Obukhova OM, Haas K (2012) Ultra-bright and -stable red and near-infrared squaraine fluorophores for in vivo two-photon imaging. PLoS One 7:e51980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Boudes M, Pieraut S, Valmier J, Carroll P, Scamps F (2008) Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism. J Neurosci Methods 170:204–211

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka M, Yanagawa Y, Hirashima N (2009) Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 178:80–86

    Article  CAS  PubMed  Google Scholar 

  35. Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflug Arch Eur J Physiol 454:675–688

    Article  CAS  Google Scholar 

  36. Kassing V, Engelmann J, Kurtz R (2013) Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One 8:e62846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Judkewitz B, Rizzi M, Kitamura K, Hausser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4:862–869

    Article  CAS  PubMed  Google Scholar 

  38. Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67

    Article  CAS  PubMed  Google Scholar 

  39. Graham LJ, Del Abajo R, Gener T, Fernandez E (2007) A method of combined single-cell electrophysiology and electroporation. J Neurosci Methods 160:69–74

    Article  CAS  PubMed  Google Scholar 

  40. Rathenberg J, Nevian T, Witzemann V (2003) High-efficiency transfection of individual neurons using modified electrophysiology techniques. J Neurosci Methods 126:91–98

    Article  PubMed  Google Scholar 

  41. Marshel JH, Mori T, Nielsen KJ, Callaway EM (2010) Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67:562–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Haas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hossain, S., Podgorski, K., Haas, K. (2015). Single-Cell Electroporation for In Vivo Imaging of Neuronal Morphology and Growth Dynamics. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics