Skip to main content

Sequential Recovery of Macromolecular Components of the Nucleolus

  • Protocol
  • First Online:
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1228))

Abstract

The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaw PJ, Highett MI, Beven AF et al (1995) The nucleolar architecture of polymerase I transcription and processing. EMBO J 14:2896–906

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Boisvert FM, van Koningsbruggen S, Navascues J et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  3. Pederson T (1998) The plurifunctional nucleolus. Nucleic Acis Res 26:3871–3876

    Article  CAS  Google Scholar 

  4. Andersen JS, Lam YW, Leung AK et al (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  5. Moore HM, Bai B, Boisvert FM et al (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10(M111):009241

    PubMed  Google Scholar 

  6. Chamousset D, Mamane S, Boisvert FM et al (2010) Efficient extraction of nucleolar proteins for interactome analyses. Proteomics 10:3045–3050

    Article  PubMed  CAS  Google Scholar 

  7. Scherl A, Coute Y, Deon C et al (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Andersen JS, Lyon CE, Fox AH et al (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  9. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  11. Hummon AB, Lim SR, Difilippantonio MJ et al (2007) Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42:467–470

    Article  PubMed  CAS  Google Scholar 

  12. Bai B, Laiho M (2012) Efficient sequential recovery of nucleolar macromolecular components. Proteomics 12:3044–3048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bai B, Moore HM, Laiho M (2013) CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis. Nucleus 4:315–325

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liao JY, Ma LM, Guo Y et al (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS One 5:e10563

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The original work leading to the development of this protocol has been supported by NIH P30 CA006973 and by Johns Hopkins University start-up funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marikki Laiho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bai, B., Laiho, M. (2015). Sequential Recovery of Macromolecular Components of the Nucleolus. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 1228. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1680-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1680-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1679-5

  • Online ISBN: 978-1-4939-1680-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics