Skip to main content

Comparative Modeling of Proteins

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Much of the biochemistry that underlies health, medicine, and numerous biotechnology applications is regulated by proteins, whereby the ability of proteins to effect such processes is dictated by the three-dimensional structural assembly of the proteins. Thus, a detailed understanding of biochemistry requires not only knowledge of the constituent sequence of proteins, but also a detailed understanding of how that sequence folds spatially. Three-dimensional analysis of protein structures is thus proving to be a critical mode of biological and medical discovery in the early twenty-first century, providing fundamental insight into function that produces useful biochemistry and dysfunction that leads to disease. The large number of distinct proteins precludes rigorous laboratory characterization of the complete structural proteome, but fortunately efficient in silico structure prediction is possible for many proteins that have not been experimentally characterized. One technique that continues to provide accurate and efficient protein structure predictions, called comparative modeling, has become a critical tool in many biological disciplines. The discussion herein is an updated version of a previous 2008 treatise focusing on the general philosophy of comparative modeling methods and on specific strategies for successfully achieving reliable and accurate models. The chapter discusses basic aspects of template selection, sequence alignment, spatial alignment, loop and gap modeling, side chain modeling, structural refinement and validation, and provides an important new discussion on automated computational tools for protein structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Amino acid (plural: AAs)

BSE:

Bovine spongiform encephalopathy

CASP:

Critical assessment of techniques for protein structure prediction

CATH:

Class architecture, topology, and homologous superfamily

Cα :

Alpha carbon on the amino acid backbone

DNA:

Deoxyribonucleic acid

H-bond:

Hydrogen-bond

MD:

Molecular dynamics

NMR:

Nuclear magnetic resonance

NR :

Number of residues

PDB:

Protein data bank

PrPC:

Prion protein cellular

PrPSc:

Prion protein scrapie

ps:

Picosecond(s)

PSI:

Protein structure initiative

RMSD:

Root-mean-squared deviation

3D:

Three-dimensional

References

  1. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  PubMed  CAS  Google Scholar 

  2. Konermann L, Pan Y (2012) Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 9:497–504

    Article  PubMed  CAS  Google Scholar 

  3. Anfinsen CB, Redfield RR, Choate WI, Page J, Carroll WR (1965) Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J Biol Chem 207:201–210

    Google Scholar 

  4. Baker D, Šali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  PubMed  CAS  Google Scholar 

  5. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo R, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  Google Scholar 

  6. Lushington GH (2008) Comparative modeling of proteins. Methods Mol Biol 443:199–212

    Article  PubMed  CAS  Google Scholar 

  7. Dayhoff MO (1972) Atlas of protein sequence and structure. National Biomedical Research Foundation, Georgetown University, Washington DC

    Google Scholar 

  8. Schaeffer RD, Daggett V (2011) Protein folds and protein folding. Protein Eng Des Sel 24:11–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, Bennett C, Marsden R, Grant A, Lee D, Akpor A, Maibaum M, Harrison A, Dallman T, Reeves G, Diboun I, Addou S, Lise S, Johnston C, Sillero A, Thornton J, Orengo C (2005) The CATH domain structure database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33:D247–D251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  11. Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515–1522

    Article  PubMed  CAS  Google Scholar 

  12. Takagi F, Koga N, Takada S (2003) How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc Natl Acad Sci U S A 100:11367–11372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kmiecik S, Kolinski A (2011) Simulation of chaperonin effect on protein folding: a shift from nucleation–condensation to framework mechanism. J Am Chem Soc 133:10283–10289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Baumketner A, Jewett A, Shea JE (2003) Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J Mol Biol 332:701–13

    Article  PubMed  CAS  Google Scholar 

  15. Dor O, Zhou Y (2006) Achieving 80% tenfold cross-validated accuracy for secondary structure prediction by large-scale training. Proteins 66:838–845

    Article  Google Scholar 

  16. Rost B (2001) Protein secondary structure prediction continues to rise. J Struct Biol 134:204–218

    Article  PubMed  CAS  Google Scholar 

  17. Kryshtafovych A, Fidelis K (2009) Protein structure prediction and model quality assessment. Drug Discov Today 14:386–393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Chung SY, Subbiah S (1996) How similar must a template protein be for homology modeling by side-chain packing methods? Pac Symp Biocomput 126–141

    Google Scholar 

  20. Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91:508–517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Dongsup K, Xu D, Guo JT, Elrott K, Xi Y (2003) PROSPECT II: protein structure prediction program for genome-scale applications. Protein Eng 16:641–650

    Article  Google Scholar 

  22. Brylinski M, Lingam D (2012) eThread: a highly optimized machine learning-based approach to meta-threading and the modeling of protein tertiary structures. PLoS One 7:e50200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  24. Fernandez-Fuentes N, Oliva B, Fiser A (2006) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 34:2085–2097

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kolodny R, Koehl P, Guibas L, Levitt M (2002) Small libraries of protein fragments model native protein structures accurately. J Mol Biol 323:297–307

    Article  PubMed  CAS  Google Scholar 

  26. Sutcliffe MJ, Haneef I, Carney D, Blundell TL (1987) Knowledge-based modelling of homologous proteins. Part I. Three dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng 1:377–384

    Article  PubMed  CAS  Google Scholar 

  27. Levitt M (1992) Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226:507–533

    Article  PubMed  CAS  Google Scholar 

  28. Šali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  Google Scholar 

  29. Lushington GH, Zaidi A, Michaelis ML (2005) Theoretically predicted structures of plasma membrane Ca2+-ATPase and their susceptibilities to oxidation. J Mol Graph Model 24:175–185

    Article  PubMed  CAS  Google Scholar 

  30. Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60:296–301

    Article  PubMed  CAS  Google Scholar 

  31. Wiehe K, Pierce B, Mintseris J, Tong W, Anderson R, Chen R, Weng Z (2005) ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 60:207–221

    Article  PubMed  CAS  Google Scholar 

  32. Chung SY, Subbiah S (1996) A structural explanation for the twilight zone of protein sequence homology. Structure 4:1123–1127

    Article  PubMed  CAS  Google Scholar 

  33. Huang ES, Koehl P, Leavitt M, Pappu RV, Ponder JW (1998) Accuracy of side-chain prediction upon the near-native protein backbones developed by ab initio folding methods. Proteins 33:204–217

    Article  PubMed  CAS  Google Scholar 

  34. PyMol v. 1.6 (2013) http://www.pymol.org/

  35. Johansson MU, Zoete V, Michielin O, Guex N (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics 13:173

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caflisch A, Paci E (2005) Molecular dynamics simulations to study protein folding and unfolding. In: Buchner J, Kiefhaber T (eds) Protein folding handbook, vol 2. Weinheim, Wiley-VCH Verlag GmbH, pp 1143–1169

    Chapter  Google Scholar 

  37. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Im W, Brooks CL III (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci USA 102:6771–6776

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr D66:12–21

    Article  Google Scholar 

  40. Berjanskii M, Liang Y, Zhou J, Tang P, Stothard P, Zhou Y, Cruz J, Macdonell C, Lin G, Lu P, Wishart DS (2010) PROSESS: a protein structure evaluation suite and server. Nucleic Acids Res 38:W633–W640 Webserver edition

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Peitsch MC (1995) Protein modeling by E-mail. Biotechnology 13:658–660

    Article  CAS  Google Scholar 

  42. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Article  PubMed  Google Scholar 

  44. Hildebrand A, Remmert M, Biegert A, Soding J (2009) Fast and accurate automatic structure prediction with HHpred". Proteins 77:128–32

    Article  PubMed  CAS  Google Scholar 

  45. Song Y, DiMaio F, Yu-Ruei Wang R, Kim D, Miles C, Brunette TJ, Thompson J, Baker D (2013) High resolution comparative modeling with RosettaCM 21(10):1735–42

    CAS  Google Scholar 

  46. Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler WH, Malmstrom L, Wollacott AM, Wang C, Andre I, Baker D (2007) Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69:118–128

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y (2009) I-TASSER: fully automated protein structure prediction in CASP8. Proteins 77:100–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Lushington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lushington, G.H. (2015). Comparative Modeling of Proteins. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics