Skip to main content

Generating Chimeric Mice from Embryonic Stem Cells via Vial Coculturing or Hypertonic Microinjection

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1194))

Abstract

The generation of a fertile embryonic stem cell (ESC)-derived or F0 (100 % coat color chimerism) mice is the final criterion in proving that the ESC is truly pluripotent. Many methods have been developed to produce chimeric mice. To date, the most popular methods for generating chimeric embryos is well sandwich aggregation between zona pellucida (ZP) removed (denuded) 2.5-day post-coitum (dpc) embryos and ESC clumps, or direct microinjection of ESCs into the cavity (blastocoel) of 3.5-dpc blastocysts. However, due to systemic limitations and the disadvantages of conventional microinjection, aggregation, and coculturing, two novel methods (vial coculturing and hypertonic microinjection) were developed in recent years at my laboratory.

Coculturing 2.5-dpc denuded embryos with ESCs in 1.7-mL vials for ~3 h generates chimeras that have significantly high levels of chimerism (including 100 % coat color chimerism) and germline transmission. This method has significantly fewer instrumental and technological limitations than existing methods, and is an efficient, simple, inexpensive, and reproducible method for “mass production” of chimeric embryos. For laboratories without a microinjection system, this is the method of choice for generating chimeric embryos. Microinjecting ESCs into a subzonal space of 2.5-dpc embryos can generate germline-transmitted chimeras including 100 % coat color chimerism. However, this method is adopted rarely due to the very small and tight space between ZP and blastomeres. Using a laser pulse or Piezo-driven instrument/device to help introduce ESCs into the subzonal space of 2.5-dpc embryos demonstrates the superior efficiency in generating ESC-derived (F0) chimeras. Unfortunately, due to the need for an expensive instrument/device and extra fine skill, not many studies have used either method. Recently, ESCs injected into the large subzonal space of 2.5-dpc embryos in an injection medium containing 0.2–0.3 M sucrose very efficiently generated viable, healthy, and fertile chimeric mice with 100 % coat color chimerism.

Both vial coculture and hypertonic microinjection methods are useful and effective alternatives for producing germline chimeric or F0 mice efficiently and reliably. Furthermore, both novel methods are also good for induced pluripotent stem cells (iPSCs) to generate chimeric embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee KH (2011) Methods to generate chimeric mice from embryonic stem cells. In: Kallos MS (ed) Embryonic stem cells—basic biology to bioengineering. InTech, Rijeka, Croatia, pp 193–212

    Google Scholar 

  2. Buehr M, Meek S, Blair K et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  CAS  PubMed  Google Scholar 

  3. Eggan K, Jaenisch R (2003) Differentiation of F1 embryonic stem cells into viable male and female mice by tetraploid embryo complementation. Methods Enzymol 365:25–39

    Article  PubMed  Google Scholar 

  4. Li X, Yu Y, Wei W et al (2005) Simple and efficient production of mice derived from embryonic stem cells aggregated with tetraploid embryos. Mol Reprod Dev 71:154–158

    Article  CAS  PubMed  Google Scholar 

  5. Nagy A, Gertsenstein M, Vintersten K et al (2003) Production of chimeras. In: Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Lab. Press, New York, pp 453–506

    Google Scholar 

  6. Nagy A, Gocza E, Diaz EM et al (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821

    CAS  PubMed  Google Scholar 

  7. Nagy A, Rossant J, Nagy R et al (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90:8424–8428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ohta H, Sakaide Y, Yamagata K et al (2008) Increasing the cell number of host tetraploid embryos can improve the production of mice derived from embryonic stem cells. Biol Reprod 79:486–492

    Article  CAS  PubMed  Google Scholar 

  9. Boland MJ, Hazen JL, Nazor KL et al (2009) Adult mice generated from induced pluripotent stem cells. Nature 461:91–94

    Article  CAS  PubMed  Google Scholar 

  10. Boland MJ, Hazen JL, Nazor KL et al. (2012) Generation of mice derived from induced pluripotent stem cells. J Vis Exp (69):e4003. doi:10.3791/4003

    Google Scholar 

  11. Kang L, Wang J, Zhang Y et al (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5:135–138

    Article  CAS  PubMed  Google Scholar 

  12. Zhao XY, Li W, Lv Z et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461:86–90

    Article  CAS  PubMed  Google Scholar 

  13. Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature 190:857–860

    Article  CAS  PubMed  Google Scholar 

  14. Nagy A, Nagy K, Gertsenstein M (2010) Production of mouse chimeras by aggregating pluripotent stem cells with embryos. Methods Enzymol 476:123–149

    Article  CAS  PubMed  Google Scholar 

  15. Papaioannou V, Johnson R (1993) Production of chimeras and genetically defined offspring from targeted ES cells. In: Joyner AL (ed) Gene targeting. A practical approach. IRL Press, Oxford, pp 107–146

    Google Scholar 

  16. Papaioannou V, Johnson R (2000) Production of chimeras by blastocyst and morula injection of targeted ES cells. In: Joyner AL (ed) Gene targeting. A practical approach. Oxford Univ. Press, Oxford, pp 133–175

    Google Scholar 

  17. Robertson EJ (1987) Production and analysis of chimaeric mice. In: Robertson EJ (ed) Teratocarcinomas and embryonic stem cells. A practical approach. IRL Press, Oxford, pp 71–112

    Google Scholar 

  18. Stewart CL (1993) Production of chimeras between embryonic stem cells and embryos. Methods Enzymol 225:823–855

    Article  CAS  PubMed  Google Scholar 

  19. Bradley A (1987) Production and analysis of chimeric mice. In: Robertson EJ (ed) Teratocarcinomas and embryonic stem cells. A practical approach. IRL Press, Oxford, pp 113–151

    Google Scholar 

  20. Artus J, Hadjantonakis AK (2011) Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Methods Mol Biol 693:37–56

    Article  CAS  PubMed  Google Scholar 

  21. Pluck A, Klasen C (2009) Generation of chimeras by microinjection. Methods Mol Biol 561:199–217

    Article  PubMed  Google Scholar 

  22. Pluck A, Klasen C (2009) Generation of chimeras by morula aggregation. Methods Mol Biol 561:219–229

    Article  PubMed  Google Scholar 

  23. Voncken JW (2011) Genetic modification of the mouse: general technology—Pronuclear and blastocyst injection. Methods Mol Biol 693:11–36

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka M, Hadjantonakis AK, Vintersten K et al (2009) Aggregation chimeras: combining ES cells, diploid, and tetraploid embryos. Methods Mol Biol 530:287–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lee KH, Chuang CK, Guo SF et al (2012) Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev 21:373–383

    Article  CAS  PubMed  Google Scholar 

  26. Lee KH, Chuang CK, Wang HW et al (2007) An alternative simple method for mass production of chimeric embryos by coculturing denuded embryos and embryonic stem cells in Eppendorf vials. Theriogenology 67:228–237

    Article  PubMed  Google Scholar 

  27. Tokunaga T, Tsunoda Y (1992) Efficacious production of viable germ-line chimeras between embryonic stem (ES) cells and 8-cell stage embryos. Dev Growth Differ 34:561–566

    Article  Google Scholar 

  28. Poueymirou WT, Auerbach W, Frendewey D et al (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25:91–99

    Article  CAS  PubMed  Google Scholar 

  29. Huang J, Deng K, Wu H et al (2008) Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells 26:1883–1890

    Article  CAS  PubMed  Google Scholar 

  30. Yang X, Chen Y, Chen J et al (1990) Potential of hypertonic medium treatment for embryo micromanipulation: I. Survival of rabbit embryos in vitro and in vivo following sucrose treatment. Mol Reprod Dev 27:110–117

    Article  CAS  PubMed  Google Scholar 

  31. Gertsenstein M, Nutter LM, Reid T et al (2010) Efficient generation of germ line transmitting chimeras from C57BL/6 N ES cells by aggregation with outbred host embryos. PLoS One 5:e11260

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nagy A, Gertsenstein M, Vintersten K et al. (2003) In vitro culture. In: Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Lab. Press: New York, pp 161–208

    Google Scholar 

  33. Biggers JD, McGinnis LK, Raffin M (2000) Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod 63:281–293

    Article  CAS  PubMed  Google Scholar 

  34. Cheng J, Dutra A, Takesono A et al (2004) Improved generation of C57BL/6 J mouse embryonic stem cells in a defined serum-free media. Genesis 39:100–104

    Article  PubMed  Google Scholar 

  35. Ogawa K, Matsui H, Ohtsuka S et al (2004) A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells 9:471–477

    Article  CAS  PubMed  Google Scholar 

  36. Vanroose G, Van Soom A, de Kruif A (2001) From co-culture to defined medium: state of the art and practical considerations. Reprod Domes Anim 36:25–28

    Article  CAS  Google Scholar 

  37. Mannello F, Tonti GA (2007) No breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609

    Article  CAS  PubMed  Google Scholar 

  38. Matise MP, Auerbach W, Joyner AL (2000) Production of targeted embryonic stem cell clones. In: Joyner AL (ed) Gene targeting. A practical approach. Oxford Univ. Press, Oxford, pp 102–132

    Google Scholar 

  39. Goldsborough MD, Tilkins ML, Price PJ et al (1998) Serum-free culture of murine embryonic stem (ES) cells. FOCUS (Gibco) 20:8–12

    Google Scholar 

  40. Ying QL, Nichols J, Chambers I et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  41. Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  Google Scholar 

  42. Brinster RL (1965) Studies on the development of mouse embryos in vitro. I. The effect of osmolarity and hydrogen ion concentration. J Exp Zool 158:49–57

    Article  CAS  PubMed  Google Scholar 

  43. Hogan B, Costantini F, Beddington R et al. (1994) In vitro manipulation of preimplantation embryos. In: Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Lab. Press: Plainview, pp 191–206

    Google Scholar 

  44. Nagy A, Gertsenstein M, Vintersten K et al. (2003) Buffers and solutions. In: Manipulating the Mouse Embryo. A Laboratory Manual. Cold Spring Harbor Lab. Press: New York, pp 725–733

    Google Scholar 

  45. Lee KH (2013) Conditions and techniques for mouse embryonic stem cell derivation and culture. In: Bhartiya D (ed) Pluripotent stem cells/book 1. InTech, Rijeka, Croatia, pp 85–115

    Google Scholar 

  46. Khosla S, Dean W, Brown D et al (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    Article  CAS  PubMed  Google Scholar 

  47. Kondoh G, Yamamoto Y, Yoshida K et al (1999) Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method. J Biochem Biophys Methods 39:137–142

    Article  CAS  PubMed  Google Scholar 

  48. Wakayama T, Rodriguez I, Perry ACF et al (1999) Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A 96:14984–14989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Nagy A, Gertsenstein M, Vintersten K et al. (2003) Production of transgenic mice. In: Manipulating the Mouse Embryo. A Laboratory Manual. Cold Spring Harbor Lab. Press: New York, pp 289–358

    Google Scholar 

  50. Hogan B, Costantini F, Beddington R et al. (1994) Production of transgenic mice. In: Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Lab. Press: Plainview, pp 217–252

    Google Scholar 

  51. Nagy A, Gertsenstein M, Vintersten K et al. (2003) Surgical procedures. In: Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Lab. Press: New York, pp 251–287

    Google Scholar 

  52. Nagy A, Gertsenstein M, Vintersten K et al. (2003) Analysis of transgenic mice. In: Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Lab. Press: New York, pp 507–539

    Google Scholar 

  53. Erhardt W, Hebestedt A, Aschenbrenner G et al (1984) A comparative study with various anesthetics in mice (pentobarbitone, ketamine-xylazine, carfentanyl-etomidate). Res Exp Med 184:159–169

    Article  CAS  Google Scholar 

  54. Hart CY, Burnett JC Jr, Redfield MM (2001) Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol Heart Circ Physiol 281:H1938–H1945

    CAS  PubMed  Google Scholar 

  55. Weiss J, Zimmermann F (1999) Tribromoethanol (Avertin) as an anaesthetic in mice. Lab Anim 33:192–193

    Article  CAS  PubMed  Google Scholar 

  56. Longo L, Bygrave A, Grosveld FG et al (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res 6:321–328

    Article  CAS  PubMed  Google Scholar 

  57. Ramirez MA, Fernandez-Gonzalez R, Perez-Crespo M et al (2009) Effect of stem cell activation, culture media of manipulated embryos, and site of embryo transfer in the production of F0 embryonic stem cell mice. Biol Reprod 80:1216–1222

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki H, Kamada N, Ueda O et al (1997) Germ-line contribution of embryonic stem cells in chimeric mice: influence of karyotype and in vitro differentiation ability. Exp Anim 46:17–23

    Article  CAS  PubMed  Google Scholar 

  59. Wuu YD, Pampfer S, Vanderheyden I et al (1998) Impact of tumor necrosis factor alpha on mouse embryonic stem cells. Biol Reprod 58:1416–1424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting my research under Contract Nos. NSC99-2324-B-059-001 and NSC100-2321-B-059-001-MY3. Drs. C.H. Chen, C.F. Tu, J.K. Juang, and S.F. Guo as well as Ms. H.R. Chang and T.L. Hsu at Animal Technology Institute Taiwan (ATIT) are commended for their critical comments, technical assistance, and routine maintenance in the laboratory and mouse facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Hsiung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, KH. (2014). Generating Chimeric Mice from Embryonic Stem Cells via Vial Coculturing or Hypertonic Microinjection. In: Singh, S., Coppola, V. (eds) Mouse Genetics. Methods in Molecular Biology, vol 1194. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1215-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1215-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1214-8

  • Online ISBN: 978-1-4939-1215-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics