Skip to main content

Immunoinformatics: A Brief Review

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

A large volume of data relevant to immunology research has accumulated due to sequencing of genomes of the human and other model organisms. At the same time, huge amounts of clinical and epidemiologic data are being deposited in various scientific literature and clinical records. This accumulation of the information is like a goldmine for researchers looking for mechanisms of immune function and disease pathogenesis. Thus the need to handle this rapidly growing immunological resource has given rise to the field known as immunoinformatics. Immunoinformatics, otherwise known as computational immunology, is the interface between computer science and experimental immunology. It represents the use of computational methods and resources for the understanding of immunological information. It not only helps in dealing with huge amount of data but also plays a great role in defining new hypotheses related to immune responses. This chapter reviews classical immunology, different databases, and prediction tool. Further, it briefly describes applications of immunoinformatics in reverse vaccinology, immune system modeling, and cancer diagnosis and therapy. It also explores the idea of integrating immunoinformatics with systems biology for the development of personalized medicine. All these efforts save time and cost to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas K, Goldsby J, Osborne RA, Barbara A, Kuby J (2006) Kuby immunology, 6th edn. Freeman and Co., WH

    Google Scholar 

  2. Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267

    CAS  PubMed  Google Scholar 

  3. Korber B, LaBute M, Yusim K (2006) Immunoinformatics: comes of Age. PLoS Comput Biol 2:0484–0492

    CAS  Google Scholar 

  4. Gardy JL, Lynn DJ, Brinkman FSL, Rew H (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30:249–262

    CAS  PubMed  Google Scholar 

  5. Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccine. Drug Discov Today 12:389–395

    CAS  PubMed  Google Scholar 

  6. Ortutay C, Vihinen M (2009) Immunome Knowledge base (IKB): An integrated service for immunome research. BMC Immunol 10

    Google Scholar 

  7. Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH (2005) A roadmap for the immunomics of category A-C pathogens. Immunity 22: 155–161

    CAS  PubMed  Google Scholar 

  8. De Groot AS (2006) Immunomics: discovering new targets for vaccine and therapeutics. Drug Discov Today 11:203–209

    PubMed  Google Scholar 

  9. Grainger DJ (2004) Immunomics: principles and practice. IRTL 2:1–6

    Google Scholar 

  10. No K, Everse J, Je D, Fe S, Cy L, Clt L, Ss T, Mosbach K (1974) Purification and separation of pyridine nucleotide-linked dehydrogenases by affinity chromatography techniques. Proc Natl Acad Sci U S A 71:3450–3454

    Google Scholar 

  11. Davey HM (2004) Flow cytometric techniques for the detection of microorganisms. Methods Cell Sci 24:91–97

    Google Scholar 

  12. Durkin MM, Connolly PA, Wheat LJ (1997) Comparison of radioimmunoassay and enzyme-linked immunoassay methods for detection of histoplasma capsulatum var. capsulatum antigen. J Clin Microbiol 35:2252–2255

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ma H, Shieh KJ, Lee SL (2006) Study of ELISA technique. Nature 4:36–37

    Google Scholar 

  14. Levine MA, Thornton P, Forman SJ, Hale PV, Holdorf D, Rouault CL, Powars D, Feinstein DI, Lukes RJ (1980) Positive Coombs test in Hodgkin’s disease: significance and implications. Blood 55:607–611

    CAS  PubMed  Google Scholar 

  15. Nishimaki T, Sagawa K, Motogi S, Saito K, Morito T, Yoshida H, Kasukawa R (1987) A competitive inhibition test of enzyme immunoassay for the anti-nRNP antibody. J Immunol Methods 100:157–160

    CAS  PubMed  Google Scholar 

  16. Wanga B, Huaa RH, Tiana Z-J, Chena N-S, Zhaoa F-R, Liua T-Q, Wanga Y-F, Tong G-Z (2009) Identification of a virus-specific and conserved B-cell epitope on NS1 protein of Japanese encephalitis virus. Virus Res 141: 90–95

    Google Scholar 

  17. Admon A, Barnea E, Ziv T (2003) Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol Cell Proteomics 2:388–398

    CAS  PubMed  Google Scholar 

  18. Boon T, Coulie PG, Eynde den BV (1997) Tumor antigens recognized by T cells. Immunol Today 18:267–268

    CAS  PubMed  Google Scholar 

  19. De Groot AS, Sbai H, Aubin CS, Mcmurry J, Martin W (2002) Immuno-informatics: mining genomes for vaccine components. Immunol Cell Biol 80:225–269

    Google Scholar 

  20. Quintana FJ, Hagedorn PH, Gad E, Yifat M, Eutan D, Cohen IR (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc Natl Acad Sci 101:14615–14621

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Sampson HA (2005) Food allergy-accurately identifying clinical reactivity. Allergy 60:19–24

    PubMed  Google Scholar 

  22. de Vegvar HEN, Robinson WH (2004) Microarray profiling of antiviral antibodies for the development of diagnostics, vaccines, and therapeutics. J Clin Immunol 111: 196–201

    Google Scholar 

  23. Neuman de Vegvar HE, Amara RR, Steinman L, Utz PJ, Robinson HL, Robinson WH (2003) Microarray profiling of antibody responses against simian-human immunodeficiency virus: post challenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J Virol 77: 11125–11138

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wang Y (2004) Immunostaining with dissociable antibody microarrays. Proteomics 4:20–26

    CAS  PubMed  Google Scholar 

  25. Magdalena J, Odling J, Qiang PH, Martenn S, Joakin L, Uhlen M, Hammarstrom L, Nilsson P (2005) Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics 4:1942–1947

    Google Scholar 

  26. Sahin U, Tureci O, Pfreundschuh M (1997) Serological identification of human tumor antigens. Curr Opin Immunol 9:709–716

    CAS  PubMed  Google Scholar 

  27. Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig coated artificial antigen-presenting cells. Nat Med 9:619–624

    CAS  PubMed  Google Scholar 

  28. Braga-Neto UM, Marques ETA (2006) From functional genomics to functional immunomics: new challenges, Old problems, Big rewards. PLoS Comput Biol 2:651–662

    CAS  Google Scholar 

  29. Nahtman T, Jernberg A, Mahdavifar S, Zerweck J, Schutkowski M, Maeurer M, Reilly M (2007) Validation of peptide epitope microarray experiments and extraction of quality data. J Immunol Methods 328:1–13

    CAS  PubMed  Google Scholar 

  30. Peters B, Sidney J, Bourne P et al (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3: 1361–1370

    Google Scholar 

  31. Lynn DJ, Winsor GL, Chan C et al (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:1–11

    Google Scholar 

  32. Barsky S, Gardy JL, Hancock R, Munzer T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    CAS  PubMed  Google Scholar 

  33. Shanon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Google Scholar 

  34. Evans MC (2008) Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Devel 11:233–241

    CAS  PubMed  Google Scholar 

  35. Saha S, Bhasin M, Raghava GPS (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6

    Google Scholar 

  36. Huang J, Honda W (2006) CED: a conformational epitope. BMC Immunol 7:7

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Schlessinger A, Ofran Y, Yachdav G, Rost B (2006) Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 34: D777–D780

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    CAS  PubMed  Google Scholar 

  39. Sathiamurthy M, Peters B, Bui HH et al (2005) An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res 1

    Google Scholar 

  40. Feldhahn M, Donnes P, Thiel P, Kohlbacher O (2009) FRED-a framework for T-cell epitope detection. Bioinformatics 25:2758–2759

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Lefranc M-P, Giudicelli V, Ginestoux C et al (2009) IMGT®, the international ImMuno GeneTics information system®. Nucleic Acids Res 37:D1006–D1012

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SGE (2011) The IMGT/HLA database. Nucleic Acids Res 39(Suppl 1):D1171–D1176

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Pomes A (2010) Relevant B cell epitopes in allergic disease. Int Arch Allergy Immunol 152:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TAE, Thomas W (1994) Allergen nomenclature. Bull World Health Organ 72:796–806

    Google Scholar 

  45. Kim C, Kwon S, Lee G, Lee H, Choi J, Kim Y, Hahn J (2009) A database for allergenic proteins and tools for allergenicity prediction. Bioinformation 3:344–345

    PubMed Central  PubMed  Google Scholar 

  46. Mari A, Scalab E, Palazzob P, Ridolfib S, Zennarob D, Carabella G (2006) Bioinformatics applied to allergy: Allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell Immunol 244:97–100

    CAS  PubMed  Google Scholar 

  47. Ivanciuc O, Schein CH, Braun W (2003) SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 31: 359–362

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20: 75–82

    CAS  PubMed  Google Scholar 

  49. Tong JC, Ren EC (2009) Immunoinformatics: current trends and future directions. Drug Discov Today 14:684–689

    CAS  PubMed  Google Scholar 

  50. Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S A 104:246–251

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Muller GM, Shapira M, Arnon R (1982) Anti-influenza response achieved by immunization with a synthetic conjugate. Proc Natl Acad Sci U S A 79:569–573

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Naruse H, Ogasawara K, Kaneda R, Hatakeyama S, Itoh T, Kida H, Miyazaki T, Good RA, Onoe K (1994) A potential peptide vaccine against two different strains of influenza virus isolated at intervals of about 10 years. Proc Natl Acad Sci U S A 91:9588–9592

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Pellequer J, Westhof E, Regenmortel MV (1991) Predicting the location of structure of continuous epitopes in proteins from their primary structure. Methods Enzymol 203: 176–201

    CAS  PubMed  Google Scholar 

  54. Parker J, Guo D, Hodges R (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    CAS  PubMed  Google Scholar 

  55. Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148

    CAS  PubMed  Google Scholar 

  56. Levitt M (1978) Conformational preferences of amino acids in globular proteins. Biochemistry 17:4277–4285

    CAS  PubMed  Google Scholar 

  57. Emini E, Hughes J, Perlow D, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus specific synthetic peptide. J Virol 55:836–839

    CAS  PubMed Central  PubMed  Google Scholar 

  58. EL-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting protective linear b-cell epitopes using evolutionary information. In: IEEE International Conference on Bioinformatics and Biomedicine 289–292

    Google Scholar 

  59. Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in protein. J Mol Recognit 16: 20–22

    CAS  PubMed  Google Scholar 

  60. Pellequer JL, Westhof E (1993) PREDITOP: a program for antigenicity predictions. J Mol Graph 11:204–210

    CAS  PubMed  Google Scholar 

  61. Saha S, Raghava GPS (2004) BcePred: Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. In: Nicosia G, Cutello V, Bentley PJ, Timis J (eds.) ICARIS Springer, LNCS 3239:197–204

    Google Scholar 

  62. Ghate AD, Bhagwat BU, Bhosle SG, Gadepalli SM, Kulkarni-Kale UD (2007) Characterization of antibody-binding sites on proteins: development of a knowledgebase and its applications in improving epitope prediction. Protein Pept Lett 14:531–535

    CAS  PubMed  Google Scholar 

  63. Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    CAS  PubMed  Google Scholar 

  64. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22:113–120

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B cell epitopes. Immunome Res 2

    Google Scholar 

  66. Toseland CP, Clayton DJ, McSparron H et al (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1

    Google Scholar 

  67. Anderson P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B cell epitopes using protein 3D structures. Protein Sci 15:2558–2567

    Google Scholar 

  68. Sweredoski M, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24: 1459–1460

    CAS  PubMed  Google Scholar 

  69. Hamelryck T (2005) An amino acid has two sides: a new 2D measure provides a different view of solvent exposure. Proteins 59: 38–48

    CAS  PubMed  Google Scholar 

  70. Bublil EM, Mayrose NTFI, Penn O, Berman AR (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the mapitope algorithm. Proteins 68:294–304

    CAS  PubMed  Google Scholar 

  71. Sollner J, Grohmann R, Rapberger R, Perco P, Lukas A, Mayer B (2008) Analysis and prediction of protective continuous B cell epitopes on pathogen proteins. Immunome Res 4

    Google Scholar 

  72. Kale KU, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33:W168–W171

    Google Scholar 

  73. Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J (2011) Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics 12:341

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Mayrose I, Penn O, Erez E et al (2007) Pepitope: Epitope mapping from affinity-selected peptides. Bioinformatics 23:3244–3246

    CAS  PubMed  Google Scholar 

  75. Pizzi E, Cortese R, Tramontano A (1995) Mapping epitopes on protein surfaces. Biopolymers 36:675–680

    CAS  PubMed  Google Scholar 

  76. Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22:1088–1095

    CAS  PubMed  Google Scholar 

  77. Huang J, Gutteridge A, Honda W, Kanehisa M (2006) MIMOX: a web tool for phage display based epitope mapping. BMC Bioinformatics 7

    Google Scholar 

  78. Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T (2007) Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35:69–78

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Huang YX, Bao YL, Guo SY, Wang Y, Zhou CG, Li YX (2008) Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinformatics 9:538

    PubMed Central  PubMed  Google Scholar 

  80. Schreiber A, Humbert M, Benz A, Dietrich U (2005) 3D-Epitope-Explorer (3DEX): Localization of conformational epitopes within three-dimensional structures of proteins. J Comput Chem 26:879–887

    CAS  PubMed  Google Scholar 

  81. Caragea C, Sinapov J, Silvescu A, Dobbs D, Honavar V (2007) Glycosylation site prediction using ensembles of support vector machine classifiers. BMC Bioinformatics 8:438

    PubMed Central  PubMed  Google Scholar 

  82. EL-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6(Suppl 2):2

    Google Scholar 

  83. Sollner J (2006) Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:209–214

    PubMed  Google Scholar 

  84. Huang L, Dai Y (2006) Direct prediction of T-cell epitopes using support vector machines with novel sequence encoding schemes. J Bioinform Comput Biol 4:93–107

    CAS  PubMed  Google Scholar 

  85. Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22:229–234

    CAS  PubMed  Google Scholar 

  86. Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic V (2006) PredTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2

    Google Scholar 

  87. Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62: 378–384

    CAS  PubMed  Google Scholar 

  88. Neilsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using networks with novel sequence representations. Protein Sci 12: 1007–1017

    Google Scholar 

  89. Buus S, Stryhn A, Winther K, Kirkby N, Pedersen LO (1995) Receptor–ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim Biophys Acta 1243:453–460

    PubMed  Google Scholar 

  90. Larsen MV, Lundegaard C, Lamberth K, Buss S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8

    Google Scholar 

  91. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Brusic V, Rudy G, Honeyman M, Hammer J, Harrison L (1998) Prediction of MHC class II-binding peptides using an evolutionary and artificial neural network. Bioinformatics 14: 121–130

    CAS  PubMed  Google Scholar 

  93. Miyata J (1991) A User’s Guide to PlaNet Version 5.6.

    Google Scholar 

  94. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131

    PubMed Central  PubMed  Google Scholar 

  95. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41

    CAS  Google Scholar 

  96. Bhasin M, Raghava GPS (2004) Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 13: 596–607

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Nanni L (2006) Machine learning algorithms for T-cell epitopes prediction. Neurocomputing 69:866–868

    Google Scholar 

  98. Bhasin M, Raghava GPS (2005) Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 33:W202–W207

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Joachims T (1999) Marking large-scale support vector machine learning practical. In: Advances in Kernel methods: support vector learning. MIT Press, Cambridge, MA, pp 169–184

    Google Scholar 

  100. Cost S, Salzberg S (1993) A weighted nearest neighbor algorithm for learning with symbolic features. Mach Learn 10:57–78

    Google Scholar 

  101. Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with java implementations, 2nd edn. Morgan Kaufman, San Francisco

    Google Scholar 

  102. Flower DR (2003) Towards in silico prediction of immunogenic epitopes. Trends Immunol 24:667–674

    CAS  PubMed  Google Scholar 

  103. Bian H, Hammer H (2004) Discovery of promiscuous HLA restricted T cell epitope with TEPITOPE. Methods 34:468–475

    CAS  PubMed  Google Scholar 

  104. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S (2012) TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One 7:e30483

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kangueane P, Sakharkar MK (2005) T epitope designer: HLA peptide binding prediction server. Bioinformation 1:21–24

    PubMed Central  PubMed  Google Scholar 

  106. Zhao B, Mathura VS, Ganapathy R, Moochhala S, Sakharkar MK, Kangneane P (2003) A novel MHCp binding prediction model. Hum Immunol 64:1123–1143

    CAS  PubMed  Google Scholar 

  107. Ponomarenko JV, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9

    Google Scholar 

  108. Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31:3621–3624

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Schiewe AJ, Haworth IS (2007) Structure based prediction of MHC-peptide association: algorithm comparison and approach to cancer vaccine design. J Mol Graph Model 26:667–675

    CAS  PubMed  Google Scholar 

  110. Jojic N, Gomez MR, Heckerman D, Kadle C, Furman OS (2006) Learning MHC-I peptide binding. Bioinformatics 22:e227–e235

    CAS  PubMed  Google Scholar 

  111. Furman OS, Altuvia Y, Sette A, Margalit H (2000) Structure-based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles. Protein Sci 9:1838–1846

    Google Scholar 

  112. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644

    CAS  PubMed  Google Scholar 

  113. Altuvia Y, Margalit H (2004) A structure-based approach for prediction of MHC-binding peptides. Methods 34:454–459

    CAS  PubMed  Google Scholar 

  114. Singh H, Raghava GPS (2001) Propred: prediction of HLA-DR binding sites. Trends Immunol 17:1236–1237

    CAS  Google Scholar 

  115. Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand database using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561

    CAS  PubMed  Google Scholar 

  116. Feldhahn M, Thiel P, Schuler MM, Hillen N, Stevanovic S, Rammensee HG, Ohlbacher O (2008) EpiToolKit-a web server for computational immunomics. Nucleic Acids Res 1:W519–W522

    Google Scholar 

  117. Flower DR, Phadwal K, Macdonald IK, Coveney PV, Davies MN, Wan S (2010) T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res 6(Suppl 2):S4

    PubMed Central  PubMed  Google Scholar 

  118. Zhang C, Anderson A (1998) DeLisi C: structural principles that govern the peptide-binding motifs of class I MHC molecules. J Mol Biol 281:929–947

    CAS  PubMed  Google Scholar 

  119. Wan S, Coveney PV, Flower DR (2005) Molecular basis of peptide recognition by the TCR: affinity differences calculated using large scale computing. J Immunol 175: 1715–1723

    CAS  PubMed  Google Scholar 

  120. Stadler MB, Stadler BM (2003) Allergenicity prediction by protein sequence. FASEB J 17: 1141–1143

    CAS  PubMed  Google Scholar 

  121. Kong W, Tan TS, Tham L, Choo KW (2006) Improved prediction of allergenicity by combination of multiple sequence motifs. In Silico Biol 7:77–86

    CAS  Google Scholar 

  122. Bjorklund AK, Atmadja SD, Zorzet A, Hammerling U, Gustafsson MG (2005) Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins. Bioinformatics 21:39–50

    PubMed  Google Scholar 

  123. Zorzet A, Gustafsson M, Hammerling U (2002) Prediction of food protein allergenicity: a bioinformatic learning systems approach. In Silico Biol 2:525–534

    CAS  PubMed  Google Scholar 

  124. Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34: W202–W209

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Fiers MWEJ, Kleter GA, Nijland H, Peijnenburg AACM, Peter NJ, Ham RCHJV (2004) AllermatchTM, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics 5

    Google Scholar 

  126. FAO/WHO: Allergenicity of Genetically Modified Foods. http://www.who.int/foodsafety/ publications/biotech/en/ec_jan 2001.pdf, 2001.

  127. FAO/WHO: Codex Principles and Guidelines on Foods Derived from Biotechnology ftp://ftp.fao.org/codex/standard/en/CodexTextsBiotechFoods.pdf, 2003.

  128. Cui J, Han LY, Li H, Ung CY, Tang ZQ, Zheng CJ, Cao ZW, Chen YZ (2007) Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties. Mol Immunol 44:514–520

    CAS  PubMed  Google Scholar 

  129. Barrio AM, Atmadja DS, Nistr A, Gustafsson MG, Hammerling U, Rudloff EB (2007) EVALLER: a web server for in silico assessment of potential protein allergenicity. Nucleic Acids Res 35:694–700

    Google Scholar 

  130. Soeria-Atmadja D, Lundell T, Gustafsson MG, Hammerling U (2006) Computational detection of allergenic proteins attains a new level of accuracy with in silico variable-length peptide extraction and machine learning. Nucleic Acids Res 34:3779–3793

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    CAS  PubMed  Google Scholar 

  132. De Groot AS, Rappuoli R (2003) Genome derived vaccines. Expert Rev Vaccines 3: 59–76

    Google Scholar 

  133. Gallimore A, Hengartner H, Zinkernagel R (1998) Hierarchies of antigen-specific cytotoxic T cell responses. Immunol Rev 164: 29–36

    CAS  PubMed  Google Scholar 

  134. Morris S, Kelly C, Howard A, Li X, Collins F (2000) The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine 18:2155–2163

    CAS  PubMed  Google Scholar 

  135. Zhao B, Sakharkar KR, Lim CS, Kangueane P, Sakharkar MK (2007) MHC-peptide binding prediction for epitope based vaccine design. Int J Integr Biol 1:127–140

    CAS  Google Scholar 

  136. Davenport MP, Hill AV (1996) Reverse immunogenetics: from HLA disease associations to vaccine candidates. Mol Med Today 2:38–45

    CAS  PubMed  Google Scholar 

  137. Iwai LK, Yoshida M, Sidney J et al (2003) In silico prediction of peptides binding to multiple HLA-DR molecules accurately identifies immunodominant epitopes from gp43 of Paracoccidioides brasiliensis frequently recognized in primary peripheral blood mononuclear cell responses from sensitized individuals. Mol Med 9:209–219

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Reche PA, Reinherz EL (2005) PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Res 33: W138–W142

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Florea L, Haldorsson B, Kohlbacher O, Schwarty R, Hoffman S, Istrail S (2003) Epitope prediction algorithm for peptide-based vaccine design. Proc IEEE Comput Soc Bioinform Conf 2:17–26

    PubMed  Google Scholar 

  140. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumor antigens and subunit vaccines. BMC Bioinformatics 8

    Google Scholar 

  141. Nagarajan H, Gupta R, Agarwal P, Scaria V, Pillai B (2006) DyNAVacS: an integrative tool for optimized DNA vaccine design. Nucleic Acids Res 34:W264–W266

    Google Scholar 

  142. Lollini PL, Motta S, Pappalardo F (2006) Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7:352

    PubMed Central  PubMed  Google Scholar 

  143. Vivona S, Bernante F, Filippini F (2006) NERVE: New enhanced reverse vaccinology environment. BMC Biotechnol 6

    Google Scholar 

  144. Xiang Z, Todd T, Ku KP et al (2008) VIOLIN: vaccine investigation and online information network. Nucleic Acids Res 36: 923–928

    Google Scholar 

  145. Xianga Z, He Y (2009) Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinol 1:23–29

    Google Scholar 

  146. Gong T, Cai Z (2005) Visual Modeling and Simulation of Adaptive Immune System. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China 6:6116–6119

    Google Scholar 

  147. Kalita JK, Chandrashekar K, Hans R, Selvam P, Newell MK (2006) Computational modelling and simulation of the immune system. Int J Bioinform Res Appl 2:63–88

    CAS  PubMed  Google Scholar 

  148. Castiglione F, Liso A (2005) The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol Immunotoxicol 27:417–432

    PubMed  Google Scholar 

  149. DeLuca DS, Blasczyk R (2007) The immunoinformatics of cancer immunotherapy. Tissue Antigens 70:265–271

    CAS  PubMed  Google Scholar 

  150. Hu H, Brzeski H, Hutchins J et al (2004) Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research. Pharmacogenomics 5:933–941

    PubMed  Google Scholar 

  151. Sanchez W, Gilman B, Kher M, Lagou S, Covitz P (2004) caGRID White Paper (cancer biomedical informatics grid prototype project). National Cancer Institute Center for Bioinformatics (NCICB), USA

    Google Scholar 

  152. Galperin MY (2005) The molecular biology database collection: 2005 update. Nucleic Acids Res 33:D5–D24

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T-cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    CAS  PubMed  Google Scholar 

  154. Wang XS, Zhao HT, Xu QW et al (2006) HPtaa database-potential target genes for clinical diagnosis and immunotherapy of human carcinoma. Nucleic Acids Res 1:D607–D612

    Google Scholar 

  155. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    CAS  PubMed  Google Scholar 

  156. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10: 7252–7259

    CAS  PubMed  Google Scholar 

  157. Rosa DS, Ribeiro SP, Cunha-Neto E (2010) CD4+ T cell epitope discovery and rational vaccine design. Arch Immunol Ther Exp 58:121–130

    CAS  Google Scholar 

  158. Iurescia S, Fioretti D, Fazio VM, Rinaldi M (2012) Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge. Biotechnol Adv 30:372–383

    CAS  PubMed  Google Scholar 

  159. Khanolkar A, Badovinac VP, Harty JT (2007) CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 39:94–104

    CAS  PubMed  Google Scholar 

  160. Lu J, Celis E (2000) Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res 60:5223–5227

    CAS  PubMed  Google Scholar 

  161. Smith CM, Wilson NS, Waithman J et al (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5:1143–1148

    CAS  PubMed  Google Scholar 

  162. Wan YY, Flavell RA (2009) How diverse–CD4 effector T cells and their functions. J Mol Cell Biol 1:20–36

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4+ T cells in the antitumor immune response. J Exp Med 188: 2357–2368

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188:2199–2204

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Houot R, Levy R (2009) Vaccines for lymphomas: idiotype vaccines and beyond. Blood Rev 23:137–142

    CAS  PubMed  Google Scholar 

  166. King CA, Spellerberg MB, Zhu D et al (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4:1281–1286

    CAS  PubMed  Google Scholar 

  167. Thirdborough SM, Radcliffe JN, Friedmann PS, Stevenson FK (2002) Vaccination with DNA encoding a single-chain TCR fusion protein induces anticlonotypic immunity and protects against T-cell lymphoma. Cancer Res 62:1757–1760

    CAS  PubMed  Google Scholar 

  168. Rice J, Elliott T, Buchan S, Stevenson FK (2001) DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol 167:1558–1565

    CAS  PubMed  Google Scholar 

  169. Yan Q (2010) Immunoinformatics and systems biology methods for personalized medicine. Methods Mol Biol 662:203–220

    CAS  PubMed  Google Scholar 

  170. Wang SS, Bratti MC, Rodriguez AC et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199:20–30

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Vivona S, Gardy JL, Ramachandran S, Brinkman FSL, Raghava GPS, Flower DR, Filippini F (2008) Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol 26:190–200

    CAS  PubMed  Google Scholar 

  172. Daz P, Gillespie M, Krueger J, Prez J, Radebaugh A, Shearman T, Vo G, Wheatley C (2008) A mathematical model of the immune system’s response in obesity-related chronic inflammation. McNair/MAOP Summer Research Symposium, Virginia Tech, Blacksburg VA 2:26–4.

    Google Scholar 

Download references

Acknowledgment

Ms. Namrata Tomar, one of the authors, gratefully acknowledges CSIR, India, for providing her a Senior Research Fellowship (9/93(0145)/12, EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat K. De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tomar, N., De, R.K. (2014). Immunoinformatics: A Brief Review. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics