Skip to main content

Multiphoton Imaging Approaches for Studying Striatal Dendritic Excitability

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

As the main input nucleus to the basal ganglia, the striatum is responsible for receiving and integrating highly convergent afferents to ultimately guide action selection and movement initiation. Although the majority of this synaptic integration occurs in the dendrites of striatal projection neurons (SPNs), their thin diameter makes them inaccessible with traditional recording electrodes. Recent advances in optical imaging technologies have allowed us and others to start lifting the veil on the mechanisms governing synaptic integration in the striatum by enabling direct dendritic measurements and manipulations. Here we describe how our lab has approached combining 2-photon imaging and photolysis with electrophysiological recordings to study dendritic excitability and synaptic integration in the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265

    Article  CAS  PubMed  Google Scholar 

  2. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. doi:10.1146/annurev-neuro-061010-113641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kress GJ, Yamawaki N, Wokosin DL et al (2013) Convergent cortical innervation of striatal projection neurons. Nat Neurosci 16:665–667. doi:10.1038/nn.3397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wilson CJ (1992) Dendritic morphology, inward rectification and the functional properties of neostriatal neurons. In: McKenna TM, Davis JL, Zornetzer SF (eds) Single neuron computation (neural networks: foundations to applications), 1st edn. Academic Press Professional Inc, San Diego, CA, pp 141–171

    Chapter  Google Scholar 

  5. Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28:10814–10824. doi:10.1523/JNEUROSCI.2660-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. doi:10.1016/j.neuron.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  7. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  8. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. doi:10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  9. Plotkin JL, Guzman JN, Schwarz N et al (2011) Optical approaches to studying the basal ganglia. In: Lane EL, Dunnett SB (eds) Animal models of movement disorders: Volume I, vol 61, Neuromethods. Springer Science + Business Media, New York, pp 191–220. doi:10.1007/978-1-61779-298-4_10

    Chapter  Google Scholar 

  10. Wokosin DL, Squirrell JM, Eliceiri KW, White JG (2003) Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev Sci Instrum 74:193–201. doi:10.1063/1.1524716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Day M, Wokosin D, Plotkin JL et al (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28:11603–11614. doi:10.1523/JNEUROSCI.1840-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Day M, Wang Z, Ding J et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259. doi:10.1038/nn1632

    Article  CAS  PubMed  Google Scholar 

  13. Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493. doi:10.1016/j.neuron.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  14. Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966. doi:10.1038/nn.2592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Plotkin JL, Day M, Surmeier DJ (2011) Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nat Neurosci 14:881–888. doi:10.1038/nn.2848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78:2655–2667. doi:10.1016/S0006-3495(00)76809-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260. doi:10.1016/j.neuron.2006.12.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. David Wokosin and Michelle Day for their invaluable contributions to establishing this technology in our laboratory. This work was funded by CHDI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Plotkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Plotkin, J.L., Surmeier, D.J. (2014). Multiphoton Imaging Approaches for Studying Striatal Dendritic Excitability. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics