Skip to main content

Cellular Models for In Vitro Lung Toxicology

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1756 Accesses

Abstract

The lung itself is extremely vulnerable to airborne pollutants and pathogens, and the treatment of chronic lung diseases like asthma, chronic obstructive lung disease, and fibrosis is increasingly relevant for public health. The identification of lung toxicants and lung safety pharmacology is thus an important endeavor.

The lung epithelial cell layer lines the surface of the conductive and respiratory airways. It forms an air–liquid interface, since it separates the gaseous airways from the interstitial compartment. The function and cellular composition of the lung epithelium differ with regard to its localization along the airways. This cell layer is of distinct relevance for lung toxicology, since it forms an early defense line against airborne particles and pathogens. The impact of compounds on the epithelial barrier depends on the air–liquid interface as well as on the cellular composition of the epithelial cell layer. Defining appropriate and predictive in vitro models for lung toxicology remains challenging. Nevertheless, those models would facilitate the identification of toxicants and would speed up the development of pharmaceutics. This chapter introduces cellular models for in vitro lung toxicology. It focuses on their background and limitations in lung toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black C, Cummins E, Royle P et al (2007) The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation. Health Technol Assess 11(33):1–126

    CAS  PubMed  Google Scholar 

  2. Antonela Antoniu S (2012) Inhaled ciprofloxacin for chronic airways infections caused by Pseudomonas aeruginosa. Expert Rev Anti Infect Ther 10(12):1439–1446

    CAS  PubMed  Google Scholar 

  3. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180

    CAS  PubMed  Google Scholar 

  4. Rock JR, Randell SH, Hogan BLM (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3(9–10):545–556

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Chambers LA, Rollins BM, Tarran R (2007) Liquid movement across the surface epithelium of large airways. Respir Physiol Neurobiol 159(3):256–270

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Boucher RC (2002) An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 54(11):1359–1371

    CAS  PubMed  Google Scholar 

  7. Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109(5):571–577

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Rawlins EL, Okubo T, Xue Y et al (2009) The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell stem cell 4(6):525–534

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–182

    PubMed Central  PubMed  Google Scholar 

  10. Rock JR, Barkauskas CE, Cronce MJ et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–E1483

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Barkauskas CE, Cronce MJ, Rackley CR et al (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1973) Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol 70(2):175–198

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH (1992) Differentiated structure and function of cultures from human tracheal epithelium. Am J Physiol 262(6 Pt 1): L713–L724

    CAS  PubMed  Google Scholar 

  14. Blank F, Rothen-Rutishauser BM, Schurch S, Gehr P (2006) An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med 19(3):392–405

    PubMed  Google Scholar 

  15. Shen BQ, Finkbeiner WE, Wine JJ et al (1994) Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion. Am J Physiol 266(5 Pt 1):L493–L501

    CAS  PubMed  Google Scholar 

  16. Shlyonsky V, Goolaerts A, Van Beneden R, Sariban-Sohraby S (2005) Differentiation of epithelial Na+ channel function. An in vitro model. J Biol Chem 280(25):24181–24187

    CAS  PubMed  Google Scholar 

  17. Brown SG, Gallacher M, Olver RE, Wilson SM (2008) The regulation of selective and nonselective Na+ conductances in H441 human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 294(5):L942–L954

    CAS  PubMed  Google Scholar 

  18. Jain L, Chen XJ, Ramosevac S et al (2001) Expression of highly selective sodium channels in alveolar type II cells is determined by culture conditions. Am J Physiol Lung Cell Mol Physiol 280(4):L646–L658

    CAS  PubMed  Google Scholar 

  19. Kunzelmann K, Kathöfer S, Hipper A et al (1996) Culture-dependent expression of Na+ conductances in airway epithelial cells. Pflugers Arch 431(4):578–586

    CAS  PubMed  Google Scholar 

  20. Giard DJ, Aaronson SA, Todaro GJ et al (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51(5):1417–1423

    CAS  PubMed  Google Scholar 

  21. Lieber M, Smith B, Szakal A et al (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17(1): 62–70

    CAS  PubMed  Google Scholar 

  22. Nardone LL, Andrews SB (1979) Cell line A549 as a model of the type II pneumocyte. Phospholipid biosynthesis from native and organometallic precursors. Biochim Biophys Acta 573(2):276–295

    CAS  PubMed  Google Scholar 

  23. Foster KA, Oster CG, Mayer MM et al (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243(2): 359–366

    CAS  PubMed  Google Scholar 

  24. Shapiro DL, Nardone LL, Rooney SA et al (1978) Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II aleveolar epithelial cells. Biochim Biophys Acta 530(2):197–207

    CAS  PubMed  Google Scholar 

  25. Mason RJ, Williams MC (1980) Phospholipid composition and ultrastructure of A549 cells and other cultured pulmonary epithelial cells of presumed type II cell origin. Biochim Biophys Acta 617(1):36–50

    CAS  PubMed  Google Scholar 

  26. Balis JU, Bumgarner SD, Paciga JE et al (1984) Synthesis of lung surfactant-associated glycoproteins by A549 cells: description of an in vitro model for human type II cell dysfunction. Exp Lung Res 6(3–4):197–213

    CAS  PubMed  Google Scholar 

  27. Wemhöner A, Jennings P, Haller T et al (2011) Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells. BMC Pulm Med 11:11

    PubMed Central  PubMed  Google Scholar 

  28. Pantazi D, Kitsiouli E, Karkabounas A et al (2013) Dipalmitoyl-phosphatidylcholine biosynthesis is induced by non-injurious mechanical stretch in a model of alveolar type II cells. Lipids 48(8):827–838

    CAS  PubMed  Google Scholar 

  29. Torday J, Rehan V (2011) Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression. Exp Lung Res 37(6):376–386

    CAS  PubMed  Google Scholar 

  30. Nakamura T, Fujiwara R, Ishiguro N et al (2010) Involvement of choline transporter-like proteins, CTL1 and CTL2, in glucocorticoid-induced acceleration of phosphatidylcholine synthesis via increased choline uptake. Biol Pharm Bull 33(4):691–696

    CAS  PubMed  Google Scholar 

  31. Rucka Z, Vanhara P, Koutna I et al (2013) Differential effects of insulin and dexamethasone on pulmonary surfactant-associated genes and proteins in A549 and H441 cells and lung tissue. Int J Mol Med 32(1): 211–218

    CAS  PubMed  Google Scholar 

  32. Tillis CC, Huang HW, Bi W et al (2011) Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor. Am J Physiol Lung Cell Mol Physiol 300(6):L940–L950

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Liu F-L, Chuang C-Y, Tai Y-T et al (2012) Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway. Respir Res 13:88

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Wu T-T, Chen T-L, Loon W-S et al (2011) Lipopolysaccharide stimulates syntheses of toll-like receptor 2 and surfactant protein-A in human alveolar epithelial A549 cells through upregulating phosphorylation of MEK1 and ERK1/2 and sequential activation of NF-κB. Cytokine 55(1):40–47

    CAS  PubMed  Google Scholar 

  35. Abate W, Alghaithy AA, Parton J et al (2010) Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 51(2): 334–344

    CAS  PubMed Central  PubMed  Google Scholar 

  36. George UM, Ashna U, Kumar SSP, Nandkumar AM (2013) Effect of tobacco extract on surfactant synthesis and its reversal by retinoic acid-role of cell-cell interactions in vitro. In Vitro Cell Dev Biol Anim 49(4): 260–269

    CAS  PubMed  Google Scholar 

  37. Geys J, Coenegrachts L, Vercammen J et al (2006) In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett 160(3):218–226

    CAS  PubMed  Google Scholar 

  38. Komori K, Murai K, Miyajima S et al (2008) Development of an in vitro batch-type closed gas exposure device with an alveolar epithelial cell line, A549, for toxicity evaluations of gaseous compounds. Anal Sci 24(8):957–962

    CAS  PubMed  Google Scholar 

  39. Lenz A-G, Karg E, Brendel E et al (2013) Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int 2013:652632

    PubMed Central  PubMed  Google Scholar 

  40. Hirai K, Yamauchi M, Witschi H, Côté MG (1983) Disintegration of lung peroxisomes during differentiation of type II cells to type I cells in butylated hydroxytoluene-administered mice. Exp Mol Pathol 39(2):129–138

    CAS  PubMed  Google Scholar 

  41. Stump DC, Lijnen HR, Collen D (1986) Purification and characterization of single-chain urokinase-type plasminogen activator from human cell cultures. J Biol Chem 261(3):1274–1278

    CAS  PubMed  Google Scholar 

  42. Kerem E, Corey M, Kerem BS et al (1990) The relation between genotype and phenotype in cystic fibrosis—analysis of the most common mutation (delta F508). N Engl J Med 323(22):1517–1522

    CAS  PubMed  Google Scholar 

  43. Haws C, Finkbeiner WE, Widdicombe JH, Wine JJ (1994) CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance. Am J Physiol 266(5 Pt 1):L502–L512

    CAS  PubMed  Google Scholar 

  44. Illek B, Yankaskas JR, Machen TE (1997) cAMP and genistein stimulate HCO3- conductance through CFTR in human airway epithelia. Am J Physiol 272(4 Pt 1):L752–L761

    CAS  PubMed  Google Scholar 

  45. Illek B, Tam AW, Fischer H, Machen TE (1999) Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium. Pflugers Arch 437(6):812–822

    CAS  PubMed  Google Scholar 

  46. Illek B, Lizarzaburu ME, Lee V et al (2000) Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin. Am J Physiol Cell Physiol 279(6): C1838–C1846

    CAS  PubMed  Google Scholar 

  47. Wu JV, Joo NS, Krouse ME, Wine JJ (2001) Cystic fibrosis transmembrane conductance regulator gating requires cytosolic electrolytes. J Biol Chem 276(9):6473–6478

    CAS  PubMed  Google Scholar 

  48. Bulteau L, Dérand R, Mettey Y et al (2000) Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells. Am J Physiol Cell Physiol 279(6): C1925–C1937

    CAS  PubMed  Google Scholar 

  49. Zhang WK, Wang D, Duan Y et al (2010) Mechanosensitive gating of CFTR. Nat Cell Biol 12(5):507–512

    CAS  PubMed  Google Scholar 

  50. Shan J, Liao J, Huang J et al (2012) Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 590(Pt 21): 5273–5297

    CAS  PubMed Central  PubMed  Google Scholar 

  51. MacVinish LJ, Cope G, Ropenga A, Cuthbert AW (2007) Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR. Br J Pharmacol 150(8):1055–1065

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ito Y, Sato S, Ohashi T et al (2004) Reduction of airway anion secretion via CFTR in sphingomyelin pathway. Biochem Biophys Res Commun 324(2):901–908

    CAS  PubMed  Google Scholar 

  53. Ramesh Babu PB, Chidekel A, Utidjian L, Shaffer TH (2004) Regulation of apical surface fluid and protein secretion in human airway epithelial cell line Calu-3. Biochem Biophys Res Commun 319(4):1132–1137

    PubMed  Google Scholar 

  54. Bridges RJ (2002) Transepithelial measurements of bicarbonate secretion in Calu-3 cells. Methods Mol Med 70:111–128

    CAS  PubMed  Google Scholar 

  55. Hasegawa I, Niisato N, Iwasaki Y, Marunaka Y (2006) Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia. Biochem Biophys Res Commun 343(2): 475–482

    CAS  PubMed  Google Scholar 

  56. Morise M, Ito Y, Matsuno T et al (2010) Heterologous regulation of anion transporters by menthol in human airway epithelial cells. Eur J Pharmacol 635(1–3):204–211

    CAS  PubMed  Google Scholar 

  57. Fischer H, Illek B (2008) Activation of the CFTR Cl channel by trimethoxyflavone in vitro and in vivo. Cell Physiol Biochem 22(5–6):685–692

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Matsuno T, Ito Y, Ohashi T et al (2008) Dual pathway activated by tert-butyl hydroperoxide in human airway anion secretion. J Pharmacol Exp Ther 327(2):453–464

    CAS  PubMed  Google Scholar 

  59. Cowley EA, Linsdell P (2002) Oxidant stress stimulates anion secretion from the human airway epithelial cell line Calu-3: implications for cystic fibrosis lung disease. J Physiol 543(Pt 1):201–209

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Cantin AM, Bilodeau G, Ouellet C et al (2006) Oxidant stress suppresses CFTR expression. Am J Physiol Cell Physiol 290(1):C262–C270

    CAS  PubMed  Google Scholar 

  61. McCarthy J, Gong X, Nahirney D et al (2011) Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int J Nanomedicine 6:1343–1356

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Berger JT, Voynow JA, Peters KW, Rose MC (1999) Respiratory carcinoma cell lines MUC genes and glycoconjugates. Am J Respir Cell Mol Biol 20(3):500–510

    CAS  PubMed  Google Scholar 

  63. Sprenger L, Goldmann T, Vollmer E et al (2011) Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways. Pulm Pharmacol Ther 24(2):232–239

    CAS  PubMed  Google Scholar 

  64. Hauber H-P, Goldmann T, Vollmer E et al (2007) LPS-induced mucin expression in human sinus mucosa can be attenuated by hCLCA inhibitors. J Endotoxin Res 13(2):109–116

    CAS  PubMed  Google Scholar 

  65. Hauber H-P, Goldmann T, Vollmer E et al (2007) Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa. Am J Respir Cell Mol Biol 37(5):606–616

    CAS  PubMed  Google Scholar 

  66. Grainger CI, Greenwell LL, Lockley DJ et al (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23(7):1482–1490

    CAS  PubMed  Google Scholar 

  67. Haghi M, Young PM, Traini D et al (2010) Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm 36(10):1207–1214

    CAS  PubMed  Google Scholar 

  68. Mathia NR, Timoszyk J, Stetsko PI et al (2002) Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target 10(1):31–40

    PubMed  Google Scholar 

  69. Mukherjee M, Pritchard DI, Bosquillon C (2012) Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. Int J Pharm 426(1–2):7–14

    CAS  PubMed  Google Scholar 

  70. Macdonald C, Shao D, Oli A, Agu RU (2013) Characterization of Calu-3 cell monolayers as a model of bronchial epithelial transport: organic cation interaction studies. J Drug Target 21(1):97–106

    CAS  PubMed  Google Scholar 

  71. Mura S, Hillaireau H, Nicolas J et al (2011) Biodegradable nanoparticles meet the bronchial airway barrier: how surface properties affect their interaction with mucus and epithelial cells. Biomacromolecules 12(11):4136–4143

    CAS  PubMed  Google Scholar 

  72. Vllasaliu D, Fowler R, Garnett M et al (2011) Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison. Biochem Biophys Res Commun 415(4):579–585

    CAS  PubMed  Google Scholar 

  73. O’Reilly MA, Weaver TE, Pilot-Matias TJ et al (1989) In vitro translation, post-translational processing and secretion of pulmonary surfactant protein B precursors. Biochim Biophys Acta 1011(2–3):140–148

    PubMed  Google Scholar 

  74. Wispé JR, Clark JC, Warner BB et al (1990) Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein. J Clin Invest 86(6):1954–1960

    PubMed Central  PubMed  Google Scholar 

  75. Reilly MAO, Gazdar AF, Morxi RE, Whitsett JA (1988) Differential effects of glucocorticoid on expression of surfactant proteins in a human lung adenocarcinoma cell line. Biochim Biophys Acta 970:194–204

    Google Scholar 

  76. Pryhuber GS, O’Reilly MA, Clark JC et al (1990) Phorbol ester inhibits surfactant protein SP-A and SP-B expression. J Biol Chem 265(34):20822–20828

    CAS  PubMed  Google Scholar 

  77. Planer BC, Ning Y, Kumar SA, Ballard PL (1997) Transcriptional regulation of surfactant proteins SP-A and SP-B by phorbol ester. Biochim Biophys Acta 1353(2):171–179

    CAS  PubMed  Google Scholar 

  78. Miakotina OL, Dekowski SA, Snyder JM (1998) Insulin inhibits surfactant protein A and B gene expression in the H441 cell line. Biochim Biophys Acta 1442(1):60–70

    CAS  PubMed  Google Scholar 

  79. George TN, Snyder JM (1997) Regulation of surfactant protein gene expression by retinoic acid metabolites. Pediatr Res 41(5):692–701

    CAS  PubMed  Google Scholar 

  80. Garbrecht MR, Schmidt TJ, Krozowski ZS, Snyder JM (2006) 11Beta-hydroxysteroid dehydrogenase type 2 and the regulation of surfactant protein A by dexamethasone metabolites. Am J Physiol Endocrinol Metab 290(4):E653–E660

    CAS  PubMed  Google Scholar 

  81. Chen MG, Atkins CL, Bruce SR et al (2011) Infant formula alters surfactant protein A (SP-A) and SP-B expression in pulmonary epithelial cells. Pediatr Pulmonol 46(9):903–912

    PubMed  Google Scholar 

  82. Duncan JE, Whitsett JA, Horowitz AD (1997) Pulmonary surfactant inhibits cationic liposome-mediated gene delivery to respiratory epithelial cells in vitro. Hum Gene Ther 8(4):431–438

    CAS  PubMed  Google Scholar 

  83. Watanabe N, Tanada S, Oriuchi N et al (2000) Tumor uptake of radioiodinated anti-human pulmonary surfactant-associated protein monoclonal antibody PE10 in nude mice bearing human pulmonary adenocarcinoma in combination with an unlabeled preload. Nucl Med Biol 27(8):723–731

    CAS  PubMed  Google Scholar 

  84. Smith MJ, Rousculp MD, Goldsmith KT et al (1994) Surfactant protein A-directed toxin gene kills lung cancer cells in vitro. Hum Gene Ther 5(1):29–35

    CAS  PubMed  Google Scholar 

  85. Itani OA, Auerbach SD, Husted RF et al (2002) Glucocorticoid-stimulated lung epithelial Na(+) transport is associated with regulated ENaC and sgk1 expression. Am J Physiol Lung Cell Mol Physiol 282(4): L631–L641

    CAS  PubMed  Google Scholar 

  86. Ramminger SJ, Richard K, Inglis SK et al (2004) A regulated apical Na+ conductance in dexamethasone-treated H441 airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 287(2):L411–L419

    CAS  PubMed  Google Scholar 

  87. Faria D, Lentze N, Almaça J et al (2012) Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Arch 463(6):819–827

    CAS  PubMed  Google Scholar 

  88. Watt GB, Ismail NA, Caballero AG et al (2012) Epithelial Na+ channel activity in human airway epithelial cells: the role of serum and glucocorticoid-inducible kinase 1. Br J Pharmacol 166(4):1272–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Tan CD, Selvanathar IA, Baines DL (2011) Cleavage of endogenous γENaC and elevated abundance of αENaC are associated with increased Na+ transport in response to apical fluid volume expansion in human H441 airway epithelial cells. Pflugers Arch 462(3):431–441

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ji H-L, Song W, Gao Z et al (2009) SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. Am J Physiol Lung Cell Mol Physiol 296(3):L372–L383

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Song W, Liu G, Bosworth CA et al (2009) Respiratory syncytial virus inhibits lung epithelial Na+ channels by up-regulating inducible nitric-oxide synthase. J Biol Chem 284(11):7294–7306

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Song W, Wei S, Matalon S (2010) Inhibition of epithelial sodium channels by respiratory syncytial virus in vitro and in vivo. Ann N Y Acad Sci 1203:79–84

    CAS  PubMed  Google Scholar 

  93. Neubauer D, Korbmacher J, Frick M et al (2013) Deuterium oxide dilution: a novel method to study apical water layers and transepithelial water transport. Anal Chem 85(9):4247–4250

    CAS  PubMed  Google Scholar 

  94. Haws C, Krouse ME, Xia Y et al (1992) CFTR channels in immortalized human airway cells. Am J Physiol 263(6 Pt 1):L692–L707

    CAS  PubMed  Google Scholar 

  95. Bernard K, Bogliolo S, Ehrenfeld J (2005) Vasotocin and vasopressin stimulation of the chloride secretion in the human bronchial epithelial cell line, 16HBE14o-. Br J Pharmacol 144(8):1037–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Leier G, Bangel-Ruland N, Sobczak K et al (2012) Sildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease. Cell Physiol Biochem 29(5–6):775–790

    CAS  PubMed  Google Scholar 

  97. Buyck JM, Verriere V, Benmahdi R et al (2013) P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells. J Cyst Fibros 12(1):60–67

    CAS  PubMed  Google Scholar 

  98. Wan H, Winton HL, Soeller C et al (2000) Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J 15(6):1058–1068

    CAS  PubMed  Google Scholar 

  99. Winton HL, Wan H, Cannell MB et al (1998) Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy 28(10):1273–1285

    CAS  PubMed  Google Scholar 

  100. Forbes B, Shah A, Martin GP, Lansley AB (2003) The human bronchial epithelial cell line 16HBE14o- as a model system of the airways for studying drug transport. Int J Pharm 257(1–2):161–167

    CAS  PubMed  Google Scholar 

  101. Perez A, Issler AC, Cotton CU et al (2007) CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 292(2):L383–L395

    CAS  PubMed  Google Scholar 

  102. Ehrhardt C, Collnot E-M, Baldes C et al (2006) Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res 323(3):405–415

    CAS  PubMed  Google Scholar 

  103. Kozlova I, Nilsson H, Henriksnäs J, Roomans GM (2006) X-ray microanalysis of apical fluid in cystic fibrosis airway epithelial cell lines. Cell Physiol Biochem 17(1–2):13–20

    CAS  PubMed  Google Scholar 

  104. Kudsiova L, Lawrence M (2008) A comparison of the effect of chitosan and chitosan-coated vesicles on monolayer integrity and permeability across Caco-2 and 16HBE14o-cells. J Pharm Sci 97(9):3998–4010

    CAS  PubMed  Google Scholar 

  105. Otero-González L, Sierra-Alvarez R, Boitano S, Field JA (2012) Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 46(18):10271–10278

    PubMed  Google Scholar 

  106. Westmoreland C, Walker T, Matthews J, Murdock J (1999) Preliminary investigations into the use of a human bronchial cell line (16HBE14o-) to screen for respiratory toxins in vitro. Toxicol In Vitro 13(4–5):761–764

    CAS  PubMed  Google Scholar 

  107. Boland S, Baeza-Squiban A, Fournier T et al (1999) Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am J Physiol 276(4 Pt 1):L604–L613

    CAS  PubMed  Google Scholar 

  108. Hussain S, Boland S, Baeza-Squiban A et al (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3): 142–149

    CAS  PubMed  Google Scholar 

  109. Mozafari MR, Reed CJ, Rostron C (2007) Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie 62(3): 205–209

    CAS  PubMed  Google Scholar 

  110. Merhi M, Dombu CY, Brient A et al (2012) Study of serum interaction with a cationic nanoparticle: implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int J Pharm 423(1):37–44

    CAS  PubMed  Google Scholar 

  111. Lehmann AD, Blank F, Baum O et al (2009) Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro. Part Fibre Toxicol 6:26

    PubMed Central  PubMed  Google Scholar 

  112. Lopez-Souza N, Avila PC, Widdicombe JH (2003) Polarized cultures of human airway epithelium from nasal scrapings and bronchial brushings. In Vitro Cell Dev Biol Anim 39(7):266–269

    PubMed  Google Scholar 

  113. Karp PH, Moninger TO, Weber SP et al (2002) An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol 188:115–137

    PubMed  Google Scholar 

  114. Widdicombe JH, Sachs LA, Morrow JL, Finkbeiner WE (2005) Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. Biotechniques 39(2):249–255

    CAS  PubMed  Google Scholar 

  115. Pezzulo AA, Starner TD, Scheetz TE et al (2011) The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol 300(1):L25–L31

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Seagrave J, Dunaway S, McDonald JD et al (2007) Responses of differentiated primary human lung epithelial cells to exposure to diesel exhaust at an air-liquid interface. Exp Lung Res 33(1):27–51

    CAS  PubMed  Google Scholar 

  117. Dobbs LG, Gonzalez R, Williams MC (1986) An improved method for isolating type II cells in high yield and purity. Am Rev Respir Dis 134(1):141–145

    CAS  PubMed  Google Scholar 

  118. Greenleaf RD, Mason RJ, Williams MC (1979) Isolation of alveolar type II cells by centrifugal elutriation. In Vitro 15(9): 673–684

    CAS  PubMed  Google Scholar 

  119. Mason RJ, Williams MC, Greenleaf RD, Clements JA (1977) Isolation and properties of type II alveolar cells from rat lung. Am Rev Respir Dis 115(6):1015–1026

    CAS  PubMed  Google Scholar 

  120. Nabeyrat E, Besnard V, Corroyer S et al (1998) Retinoic acid-induced proliferation of lung alveolar epithelial cells: relation with the IGF system. Am J Physiol 275(1 Pt 1): L71–L79

    CAS  PubMed  Google Scholar 

  121. Kalina M, Riklis S, Blau H (1993) Pulmonary epithelial cell proliferation in primary culture of alveolar type II cells. Exp Lung Res 19(2):153–175

    CAS  PubMed  Google Scholar 

  122. Leslie CC, McCormick-Shannon K, Mason RJ, Shannon JM (1993) Proliferation of rat alveolar epithelial cells in low density primary culture. Am J Respir Cell Mol Biol 9(1): 64–72

    CAS  PubMed  Google Scholar 

  123. Dobbs LG, Geppert EF, Williams MC et al (1980) Metabolic properties and ultrastructure of alveolar type II cells isolated with elastase. Biochim Biophys Acta 618(3):510–523

    CAS  PubMed  Google Scholar 

  124. Dobbs LG, Williams MC, Brandt AE (1985) Changes in biochemical characteristics and pattern of lectin binding of alveolar type II cells with time in culture. Biochim Biophys Acta 846(1):155–166

    CAS  PubMed  Google Scholar 

  125. Diglio CA, Kikkawa Y (1977) The type II epithelial cells of the lung. IV. Adaption and behavior of isolated type II cells in culture. Lab Invest 37(6):622–631

    CAS  PubMed  Google Scholar 

  126. Reynolds LJ, McElroy M, Richards RJ (1999) Density and substrata are important in lung type II cell transdifferentiation in vitro. Int J Biochem Cell Biol 31(9):951–960

    CAS  PubMed  Google Scholar 

  127. Danto SI, Shannon JM, Borok Z et al (1995) Reversible transdifferentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 12(5):497–502

    CAS  PubMed  Google Scholar 

  128. Campbell L, Hollins AJ, Al-Eid A et al (1999) Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem Biophys Res Commun 262(3):744–751

    CAS  PubMed  Google Scholar 

  129. Danto SI, Zabski SM, Crandall ED (1992) Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies. Am J Respir Cell Mol Biol 6(3): 296–306

    CAS  PubMed  Google Scholar 

  130. Haller T, Ortmayr J, Friedrich F et al (1998) Dynamics of surfactant release in alveolar type II cells. Proc Natl Acad Sci U S A 95(4): 1579–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Miklavc P, Mair N, Wittekindt OH et al (2011) Fusion-activated Ca2+ entry via vesicular P2X4 receptors promotes fusion pore opening and exocytotic content release in pneumocytes. Proc Natl Acad Sci U S A 108(35):14503–14508

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Miklavc P, Frick M, Wittekindt OH et al (2010) Fusion-activated Ca2+ entry: an “active zone” of elevated Ca2+ during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes. PLoS One 5(6):e10982

    PubMed Central  PubMed  Google Scholar 

  133. Miklavc P, Albrecht S, Wittekindt OH et al (2009) Existence of exocytotic hemifusion intermediates with a lifetime of up to seconds in type II pneumocytes. Biochem J 424(1): 7–14

    CAS  PubMed  Google Scholar 

  134. Haller T, Pfaller K, Dietl P (2001) The conception of fusion pores as rate-limiting structures for surfactant secretion. Comp Biochem Physiol A Mol Integr Physiol 129(1): 227–231

    CAS  PubMed  Google Scholar 

  135. Haller T, Auktor K, Frick M et al (1999) Threshold calcium levels for lamellar body exocytosis in type II pneumocytes. Am J Physiol 277(5 Pt 1):L893–L900

    CAS  PubMed  Google Scholar 

  136. Sun P, Wang J, Mehta P et al (2003) Effect of nitric oxide on lung surfactant secretion. Exp Lung Res 29(5):303–314

    CAS  PubMed  Google Scholar 

  137. Rice WR, Singleton FM (1989) Reactive blue 2 selectively inhibits P2y-purinoceptor-stimulated surfactant phospholipid secretion from rat isolated alveolar type II cells. Br J Pharmacol 97(1):158–162

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Chen M, Brown LA (1990) Histamine stimulation of surfactant secretion from rat type II pneumocytes. Am J Physiol 258(4 Pt 1): L195–L200

    CAS  PubMed  Google Scholar 

  139. Wirtz HRW, Schmidt M (1996) Acute influence of cigarette smoke on secretion of pulmonary surfactant in rat alveolar type II cells in culture. Eur Respir J 9(1):24–32

    CAS  PubMed  Google Scholar 

  140. Pian MS, Dobbs LG (1997) Lipoprotein-stimulated surfactant secretion in alveolar type II cells: mediation by heterotrimeric G proteins. Am J Physiol 273(3 Pt 1): L634–L639

    CAS  PubMed  Google Scholar 

  141. Lipschik GY, Treml JF, Moore SD, Beers MF (1998) Pneumocystis carinii glycoprotein A inhibits surfactant phospholipid secretion by rat alveolar type II cells. J Infect Dis 177(1): 182–187

    CAS  PubMed  Google Scholar 

  142. Isohama Y, Kumanda Y, Tanaka K et al (1997) Dexamethasone increases beta 2-adrenoceptor-regulated phosphatidylcholine secretion in rat alveolar type II cells. Jpn J Pharmacol 73(2):163–169

    CAS  PubMed  Google Scholar 

  143. Romero C, Benito E, Bosch MA (1995) Effect of Escherichia coli lipopolysaccharide on surfactant secretion in primary cultures of rat type II pneumocytes. Biochim Biophys Acta 1256(3):305–309

    PubMed  Google Scholar 

  144. Garcia-Verdugo I, Ravasio A, De Paco EG et al (2008) Long-term exposure to LPS enhances the rate of stimulated exocytosis and surfactant secretion in alveolar type II cells and upregulates P2Y2 receptor expression. Am J Physiol Lung Cell Mol Physiol 295(4): L708–L717

    CAS  PubMed  Google Scholar 

  145. Nishina K, Mikawa K, Morikawa O et al (2002) The effects of intravenous anesthetics and lidocaine on proliferation of cultured type II pneumocytes and lung fibroblasts. Anesth Analg 94(2):385–388, table of contents

    CAS  PubMed  Google Scholar 

  146. Zhang F, Nielsen LD, Lucas JJ, Mason RJ (2004) Transforming growth factor-beta antagonizes alveolar type II cell proliferation induced by keratinocyte growth factor. Am J Respir Cell Mol Biol 31(6):679–686

    CAS  PubMed  Google Scholar 

  147. Li Y, Yang T, Liu Q et al (2004) Effect of isoflurane on proliferation and Na+, K+-ATPase activity of alveolar type II cells injured by hydrogen peroxide. Drug Metabol Drug Interact 20(3):175–183

    CAS  PubMed  Google Scholar 

  148. Günther A, Korfei M, Mahavadi P et al (2012) Unravelling the progressive pathophysiology of idiopathic pulmonary fibrosis. Eur Respir Rev 21(124):152–160

    PubMed  Google Scholar 

  149. Wiszniewski L, Jornot L, Dudez T et al (2006) Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis. Am J Respir Cell Mol Biol 34(1): 39–48

    CAS  PubMed  Google Scholar 

  150. Haswell LE, Hewitt K, Thorne D et al (2010) Cigarette smoke total particulate matter increases mucous secreting cell numbers in vitro: a potential model of goblet cell hyperplasia. Toxicol In Vitro 24(3):981–987

    CAS  PubMed  Google Scholar 

  151. Auger F, Gendron M-C, Chamot C et al (2006) Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 215(3):285–294

    CAS  PubMed  Google Scholar 

  152. Sims AC, Baric RS, Yount B et al (2005) Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol 79(24):15511–15524

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Lopez-Souza N, Favoreto S, Wong H et al (2009) In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 123(6):1384.e2–1390.e2

    Google Scholar 

  154. Huang S, Wiszniewski L, Constant S, Roggen E (2013) Potential of in vitro reconstituted 3D human airway epithelia (MucilAirTM) to assess respiratory sensitizers. Toxicol In Vitro 27(3):1151–1156

    CAS  PubMed  Google Scholar 

  155. Anderson SE, Khurshid SS, Meade BJ et al (2013) Toxicological analysis of limonene reaction products using an in vitro exposure system. Toxicol In Vitro 27(2):721–730

    CAS  PubMed  Google Scholar 

  156. Holder AL, Lucas D, Goth-Goldstein R, Koshland CP (2008) Cellular response to diesel exhaust particles strongly depends on the exposure method. Toxicol Sci 103(1): 108–115

    CAS  PubMed  Google Scholar 

  157. Fröhlich E, Bonstingl G, Höfler A et al (2013) Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol In Vitro 27(1):409–417

    PubMed  Google Scholar 

  158. Lenz AG, Karg E, Lentner B et al (2009) A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol 6:32

    PubMed Central  PubMed  Google Scholar 

  159. Bur M, Huwer H, Muys L, Lehr C-M (2010) Drug transport across pulmonary epithelial cell monolayers: effects of particle size, apical liquid volume, and deposition technique. J Aerosol Med Pulm Drug Deliv 23(3): 119–127

    CAS  PubMed  Google Scholar 

  160. Adson A, Raub TJ, Burton PS et al (1994) Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 83(11):1529–1536

    CAS  PubMed  Google Scholar 

  161. Steimer A, Haltner E, Lehr C-M (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18(2):137–182

    CAS  PubMed  Google Scholar 

  162. Forti E, Bulgheroni A, Cetin Y et al (2010) Characterisation of cadmium chloride induced molecular and functional alterations in airway epithelial cells. Cell Physiol Biochem 25(1):159–168

    CAS  PubMed  Google Scholar 

  163. Forti E, Salovaara S, Cetin Y et al (2011) In vitro evaluation of the toxicity induced by nickel soluble and particulate forms in human airway epithelial cells. Toxicol In Vitro 25(2): 454–461

    CAS  PubMed  Google Scholar 

  164. Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23(2–3):110–127

    CAS  PubMed  Google Scholar 

  165. Li H, Sheppard DN, Hug MJ (2004) Transepithelial electrical measurements with the Ussing chamber. J Cyst Fibros 3 Suppl 2: 123–126

    Google Scholar 

  166. Tran HTT, Tran PHL, Lee B-J (2009) New findings on melatonin absorption and alterations by pharmaceutical excipients using the Ussing chamber technique with mounted rat gastrointestinal segments. Int J Pharm 378(1–2):9–16

    CAS  PubMed  Google Scholar 

  167. Werle M, Hoffer M (2006) Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J Control Release 111(1–2):41–46

    CAS  PubMed  Google Scholar 

  168. Sajeesh S, Bouchemal K, Marsaud V et al (2010) Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release 147(3):377–384

    CAS  PubMed  Google Scholar 

  169. Yamamoto A, Tanaka H, Okumura S et al (2001) Evaluation of insulin permeability and effects of absorption enhancers on its permeability by an in vitro pulmonary epithelial system using Xenopus pulmonary membrane. Biol Pharm Bull 24(4):385–389

    CAS  PubMed  Google Scholar 

  170. Han D-Y, Nie H-G, Gu X et al (2010) K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport. Respir Res 11:65

    PubMed Central  PubMed  Google Scholar 

  171. Clunes LA, Davies CM, Coakley RD et al (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 26(2):533–545

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Tarran R, Sabater JR, Clarke TC et al (2013) Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol 304(11): L746–L756

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35(1): 116–129

    CAS  PubMed  Google Scholar 

  174. Gonzalez RF, Dobbs LG (1998) Purification and analysis of RTI40, a type I alveolar epithelial cell apical membrane protein. Biochim Biophys Acta 1429(1):208–216

    CAS  PubMed  Google Scholar 

  175. Wong MH, Johnson MD (2013) Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One 8(1): e55545

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Asnaghi MA, Jungebluth P, Raimondi MT et al (2009) A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: from concept to clinical trial. Biomaterials 30(29):5260–5269

    CAS  PubMed  Google Scholar 

  177. Macchiarini P, Jungebluth P, Go T et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655): 2023–2030

    PubMed  Google Scholar 

  178. Huh D, Leslie DC, Matthews BD et al (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159): 159ra147

    PubMed  Google Scholar 

  179. Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986): 1662–1668

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver H. Wittekindt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wittekindt, O.H. (2014). Cellular Models for In Vitro Lung Toxicology. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics