Skip to main content

Evaluating Endocrine Disruption In Vitro

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1711 Accesses

Abstract

This chapter describes the relevant physiology and anatomy of endocrine organs most often targeted by xenobiotics and the strategies and in vitro models in current use that have proven important for studying endocrine disruption. This chapter focuses on the reproductive system, the adrenal gland, and the thyroid. Detailed methodology is not described in this chapter, but rather practical considerations for the available methods are described and resources referenced to direct readers to further details of each assay. An understanding of the regulatory processes and function of the endocrine glands is critical in order to properly utilize the appropriate in vitro models to screen compounds or perform investigative studies and be able to interpret results. Antiestrogenic or estrogenic actions of xenobiotics have been a main concern for the field of endocrine disruption. Common endpoints used to study such effects include estrogen receptor (ER) binding, proliferation of estrogen-responsive cells, and ER-dependent reporter gene activity in multiple cell types. Inhibition of steroidogenesis is a primary mechanism of endocrine disruption, and chemical-induced alterations in biosynthesis of both reproductive and adrenal steroids can be tested in the human H295R adrenocortical cell line. For adrenal gland dysfunction, differentiating stress from direct or indirect actions on adrenals is important. If signs of stress are not observed in vivo, evidence from H295R cells or primary adrenocortical cell models can often identify direct effects on adrenals. Endpoints can include cytotoxicity, lipid accumulation, changes in protein or gene expression, altered signaling of key pathways, or changes in steroid synthesis in response physiologic signals. Typical alterations in thyroid function are cell proliferation or thyroid hormone synthesis. The latter can be disrupted by inhibition of thyroperoxidase or iodide uptake or by upregulation of hepatic thyroid hormone-inactivating enzymes, which is typically rat specific. In vitro assays include microsomal thyroperoxidase activity assays and cellular assays for iodide uptake in FRTL-5 or PCC13 rat thyroid cell lines. More in-depth investigations on alterations in signaling pathways, for example, can utilize FRTL-5 or PCC13 cells, or primary cells from multiple species, including human, dog, rodent, pig, or cow thyroid cells. Overall, many in vitro models are available to test for endocrine disruption, but many remain to be properly validated, and caveats exist for most. In spite of this, in vitro models have proven to be essential for both screening purposes and mechanistic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EDSTAC (1998) Endocrine Disruptor Screening and Testing Advisory Committee final report

    Google Scholar 

  2. Dekant W, Colnot T (2013) Endocrine effects of chemicals: aspects of hazard identification and human health risk assessment. Toxicol Lett 223:280–286. doi:10.1016/j.toxlet.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  3. Hecker M, Hollert H (2011) Endocrine disruptor screening: regulatory perspectives and needs. Environmental Sciences Europe 23(1): 15–29

    Article  Google Scholar 

  4. Kavlock RJ, Ankley GT (1996) A perspective on the risk assessment process for endocrine-disruptive effects on wildlife and human health. Risk Anal 16(6):731–739

    Article  CAS  PubMed  Google Scholar 

  5. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32(1):81–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25(6):947–970

    Article  CAS  PubMed  Google Scholar 

  7. Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  CAS  PubMed  Google Scholar 

  8. Bulun SE, Adashi EY (2008) The Physiology and pathology of the female reproductive axis. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR (eds) Williams textbook of endocrinology, 11th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  9. Stewart P (2003) The adrenal cortex. In: Larsen P, Kronenberg H, Melmed S, Polonsky K (eds) Williams textbook of endocrinology, 10th edn. Saunders, Philadelphia

    Google Scholar 

  10. WHO/IPCS (2002) Global assessment of the state-of-the science of endocrine disruptors. http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/. Accessed 20 Oct 2013

  11. Organization for Economic Cooperation and Development (2010) Guidance document on the assessment of chemicals for endocrine disruption. http://www.oecd.org/chemicalsafety/testing/46436593.pdf. Accessed 29 Oct 2013

  12. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5):378–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Newbold RR (2004) Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 199(2):142–150

    Article  CAS  PubMed  Google Scholar 

  14. Mittendorf R (1995) Teratogen update: carcinogenesis and teratogenesis associated with exposure to diethylstilbestrol (DES) in utero. Teratology 51(6):435–445

    Article  CAS  PubMed  Google Scholar 

  15. Bay K, Asklund C, Skakkebaek NE, Andersson AM (2006) Testicular dysgenesis syndrome: possible role of endocrine disrupters. Best Pract Res Clin Endocrinol Metab 20(1):77–90

    Article  CAS  PubMed  Google Scholar 

  16. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE (1992) Evidence for decreasing quality of semen during past 50 years. Br Med J 305(6854):609–613

    Article  CAS  Google Scholar 

  17. Swan SH, Elkin EP, Fenster L (2000) The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ Health Perspect 108(10):961–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Merzenich H, Zeeb H, Blettner M (2010) Decreasing sperm quality: a global problem? BMC Public Health 10:24

    Article  PubMed Central  PubMed  Google Scholar 

  19. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138(11):4613–4621

    CAS  PubMed  Google Scholar 

  20. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3): 905–931

    Article  CAS  PubMed  Google Scholar 

  21. Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276(40):36869–36872

    Article  CAS  PubMed  Google Scholar 

  22. Anderson LD, Hirshfield AN (1992) An overview of follicular development in the ovary: from embryo to the fertilized ovum in vitro. Md Med J 41(7):614–620

    CAS  PubMed  Google Scholar 

  23. Mark-Kappeler CJ, Hoyer PB, Devine PJ (2011) Xenobiotic effects on ovarian preantral follicles. Biol Reprod 85(5):871–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Creasy DM (2003) Evaluation of testicular toxicology: a synopsis and discussion of the recommendations proposed by the Society of Toxicologic Pathology. Birth Defects Res B Dev Reprod Toxicol 68(5):408–415

    Article  CAS  PubMed  Google Scholar 

  25. Soto AM, Maffini MV, Schaeberle CM, Sonnenschein C (2006) Strengths and weaknesses of in vitro assays for estrogenic and androgenic activity. Best Pract Res Clin Endocrinol Metab 20(1):15–33

    Article  CAS  PubMed  Google Scholar 

  26. Akahori Y, Nakai M, Yamasaki K, Takatsuki M, Shimohigashi Y, Ohtaki M (2008) Relationship between the results of in vitro receptor binding assay to human estrogen receptor alpha and in vivo uterotrophic assay: comparative study with 65 selected chemicals. Toxicol In Vitro 22(1):225–231

    Article  CAS  PubMed  Google Scholar 

  27. Hecker M, Hollert H, Cooper R, Vinggaard AM, Akahori Y, Murphy M, Nellemann C, Higley E, Newsted J, Wu R, Lam P, Laskey J, Buckalew A, Grund S, Nakai M, Timm G, Giesy JP (2007) The OECD validation program of the H295R steroidogenesis assay for the identification of in vitro inhibitors or inducers of testosterone and estradiol production, phase 2: inter laboratory prevalidation studies. Env Sci Pollut Res 14:23–30

    Article  CAS  Google Scholar 

  28. Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, Giesy JP (2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharmacol 217(1):114–124

    Article  CAS  PubMed  Google Scholar 

  29. Rainey WE, Bird IM, Sawetawan C, Hanley NA, McCarthy JL, McGee EA, Wester R, Mason JI (1993) Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77(3): 731–737

    CAS  PubMed  Google Scholar 

  30. Organization for Economic Cooperation and Development (2012) Performance-based test guideline for stably transfected transactivation in vitro assays to detect estrogen receptor agonists 455

    Google Scholar 

  31. Li Y, Luh CJ, Burns KA, Arao Y, Jiang Z, Teng CT, Tice RR, Korach KS (2013) Endocrine-disrupting chemicals (EDCs): in vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect 121(4):459–466

    PubMed Central  PubMed  Google Scholar 

  32. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83(8):2496–2500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103(Suppl 7):113–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Desaulniers D, Leingartner K, Zacharewski T, Foster WG (1998) Optimization of an MCF7-E3 cell proliferation assay and effects of environmental pollutants and industrial chemicals. Toxicol In Vitro 12(4):409–422

    Article  CAS  PubMed  Google Scholar 

  35. Evans RM, Scholze M, Kortenkamp A (2012) Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles. PLoS One 7(8):e43606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wilson VS, Bobseine K, Gray LE Jr (2004) Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol Sci 81(1):69–77

    Article  CAS  PubMed  Google Scholar 

  37. Vanparys C, Depiereux S, Nadzialek S, Robbens J, Blust R, Kestemont P, De CW (2010) Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples. Sci Total Environ 408(20):4451–4460

    Article  CAS  PubMed  Google Scholar 

  38. Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51(5):1409–1416

    CAS  PubMed  Google Scholar 

  39. Lippman ME, Bolan G (1975) Oestrogen-responsive human breast cancer in long term tissue culture. Nature 256(5518):592–593

    Article  CAS  PubMed  Google Scholar 

  40. Lippman M, Bolan G, Huff K (1976) The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 36(12):4595–4601

    CAS  PubMed  Google Scholar 

  41. Horwitz KB, Costlow ME, McGuire WL (1975) MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. Steroids 26(6): 785–795

    Article  CAS  PubMed  Google Scholar 

  42. Desaulniers DM, Lussier JG, Goff AK, Bousquet D, Guilbault LA (1995) Follicular development and reproductive endocrinology during a synchronized estrous cycle in heifers and mature cows displaying contrasting superovulatory responses. Domest Anim Endocrinol 12(2):117–131

    Article  CAS  PubMed  Google Scholar 

  43. Harvey PW, Everett DJ, Springall CJ (2007) Adrenal toxicology: a strategy for assessment of functional toxicity to the adrenal cortex and steroidogenesis. J Appl Toxicol 27(2):103–115

    Article  CAS  PubMed  Google Scholar 

  44. Harvey PW, Sutcliffe C (2010) Adrenocortical hypertrophy: establishing cause and toxicological significance. J Appl Toxicol 30(7): 617–626

    Article  CAS  PubMed  Google Scholar 

  45. Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94(1):3–21

    Article  CAS  PubMed  Google Scholar 

  46. Ulleras E, Ohlsson A, Oskarsson A (2008) Secretion of cortisol and aldosterone as a vulnerable target for adrenal endocrine disruption: screening of 30 selected chemicals in the human H295R cell model. J Appl Toxicol 28(8):1045–1053

    Article  CAS  PubMed  Google Scholar 

  47. Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV (1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 50(17):5488–5496

    CAS  PubMed  Google Scholar 

  48. Samandari E, Kempna P, Nuoffer JM, Hofer G, Mullis PE, Fluck CE (2007) Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3beta-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. J Endocrinol 195(3):459–472

    Article  CAS  PubMed  Google Scholar 

  49. Rainey WE, Saner K, Schimmer BP (2004) Adrenocortical cell lines. Mol Cell Endocrinol 228(1–2):23–38

    Article  CAS  PubMed  Google Scholar 

  50. Bird IM, Mason JI, Rainey WE (1994) Regulation of type 1 angiotensin II receptor messenger ribonucleic acid expression in human adrenocortical carcinoma H295 cells. Endocrinology 134(6):2468–2474

    CAS  PubMed  Google Scholar 

  51. Bird IM, Mason JI, Oka K, Rainey WE (1993) Angiotensin-II stimulates an increase in cAMP and expression of 17 alpha-hydroxylase cytochrome P450 in fetal bovine adrenocortical cells. Endocrinology 132(2):932–934

    CAS  PubMed  Google Scholar 

  52. Su H, Gu Y, Li F, Wang Q, Huang B, Jin X, Ning G, Sun F (2013) The PI3K/AKT/mTOR signaling pathway is overactivated in primary aldosteronism. PLoS One 8(4):e62399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Harvey PW, Everett DJ (2003) The adrenal cortex and steroidogenesis as cellular and molecular targets for toxicity: critical omissions from regulatory endocrine disrupter screening strategies for human health? J Appl Toxicol 23(2):81–87

    Article  CAS  PubMed  Google Scholar 

  54. Ohlsson A, Ulleras E, Oskarsson A (2009) A biphasic effect of the fungicide prochloraz on aldosterone, but not cortisol, secretion in human adrenal H295R cells-underlying mechanism. Toxicol Lett 191(2–3):174–180

    Article  CAS  PubMed  Google Scholar 

  55. Li D, Dammer EB, Sewer MB (2012) Resveratrol stimulates cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc. Endocrinology 153(7):3258–3268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wolfgang G, Vernetti L, MacDonald J (1994) Isolation and use of primary adrenocortical cells from guinea pigs, dogs and monkeys for in vitro toxicity studies. Toxicol Methods 4(3):149–160

    Article  CAS  Google Scholar 

  57. Roskelley CD, Auersperg N (1990) Density separation of rat adrenocortical cells: morphology, steroidogenesis, and P-450scc expression in primary culture. Vitro Cell Dev Biol 26(5):493–501

    Article  CAS  Google Scholar 

  58. Morishita K, Okumura H, Ito N, Takahashi N (2001) Primary culture system of adrenocortical cells from dogs to evaluate direct effects of chemicals on steroidogenesis. Toxicology 165(2–3):171–178

    Article  CAS  PubMed  Google Scholar 

  59. Hornsby PJ, McAllister JM (1991) Culturing steroidogenic cells. Methods Enzymol 206:371–380

    Article  CAS  PubMed  Google Scholar 

  60. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73(7):2424–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Capen C, Martin S (2013) The thyroid gland. In: Pineda M (ed) McDonald’s veterinary endocrinology and reproduction, 5th edn. Blackwell Publishing, Carlton, Victoria

    Google Scholar 

  62. Capen C (1999) Thyroid and parathyroid toxicology. In: Harvey P, Rush K, Cockburn A (eds) Endocrine and hormonal toxicology. John Wiley & Sons Ltd., NY, USA

    Google Scholar 

  63. Capen C (2001) Toxic responses of the endocrine system. In: Klaassen C (ed) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill Companies Inc., New York

    Google Scholar 

  64. Larsen P, Davies T, Schlumberger M, Hay I (2003) Thyroid physiology and diagnostic evaluation of patients with thyroid disorders. In: Larsen P, Kronenberg H, Melmed S, Polonsky K (eds) Williams textbook of endocrinology, 10th edn. Saunders, Philadelphia

    Google Scholar 

  65. DeVito M, Biegel L, Brouwer A, Brown S, Brucker-Davis F, Cheek AO, Christensen R, Colborn T, Cooke P, Crissman J, Crofton K, Doerge D, Gray E, Hauser P, Hurley P, Kohn M, Lazar J, McMaster S, McClain M, McConnell E, Meier C, Miller R, Tietge J, Tyl R (1999) Screening methods for thyroid hormone disruptors. Environ Health Perspect 107(5):407–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Cunha GC, van Ravenzwaay B (2005) Evaluation of mechanisms inducing thyroid toxicity and the ability of the enhanced OECD Test Guideline 407 to detect these changes. Arch Toxicol 79(7):390–405

    Article  CAS  PubMed  Google Scholar 

  67. Dohler KD, Wong CC, von zur Muhlen A (1979) The rat as model for the study of drug effects on thyroid function: consideration of methodological problems. Pharmacol Ther B 5(1–3):305–318

    Article  CAS  PubMed  Google Scholar 

  68. Jennings AS, Schwartz SL, Balter NJ, Gardner D, Witorsch RJ (1990) Effects of oral erythrosine (2′,4′,5′,7′-tetraiodofluorescein) on the pituitary-thyroid axis in rats. Toxicol Appl Pharmacol 103(3):549–556

    Article  CAS  PubMed  Google Scholar 

  69. Hood A, Klaassen CD (2000) Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation. Toxicol Sci 55(1):78–84

    Article  CAS  PubMed  Google Scholar 

  70. Kimura T, Van KA, Golstein J, Fusco A, Dumont JE, Roger PP (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22(5):631–656

    Article  CAS  PubMed  Google Scholar 

  71. Bidey S (1995) Thyroid Follicular cells in monolayer culture. In vitro toxicity testing. Methods Mol Biol 43:33–42

    CAS  PubMed  Google Scholar 

  72. Ambesi-Impiombato FS, Villone G (1987) The FRTL-5 thyroid cell strain as a model for studies on thyroid cell growth. Acta Endocrinol Suppl (Copenh) 281:242–245

    CAS  Google Scholar 

  73. Tramontano D, Cushing GW, Moses AC, Ingbar SH (1986) Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology 119(2):940–942

    Article  CAS  PubMed  Google Scholar 

  74. Vainio M, Saarinen P, Tornquist K (1997) Adenosine inhibits DNA synthesis stimulated with TSH, insulin, and phorbol 12-myristate 13-acetate in rat thyroid FRTL-5 cells. J Cell Physiol 171(3):336–342

    Article  CAS  PubMed  Google Scholar 

  75. Riedel C, Levy O, Carrasco N (2001) Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 276(24):21458–21463

    Article  CAS  PubMed  Google Scholar 

  76. Spitzweg C, Morris JC (2002) Sodium iodide symporter (NIS) and thyroid. Hormones (Athens) 1(1):22–34

    Article  Google Scholar 

  77. Kogai T, Endo T, Saito T, Miyazaki A, Kawaguchi A, Onaya T (1997) Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 138(6):2227–2232

    Article  CAS  PubMed  Google Scholar 

  78. Waltz F, Pillette L, Ambroise Y (2010) A nonradioactive iodide uptake assay for sodium iodide symporter function. Anal Biochem 396(1):91–95

    Article  CAS  PubMed  Google Scholar 

  79. Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43(9):1188–1200

    CAS  PubMed  Google Scholar 

  80. Kogai T, Sajid-Crockett S, Newmarch LS, Liu YY, Brent GA (2008) Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells. J Endocrinol 199(2):243–252

    Article  CAS  PubMed  Google Scholar 

  81. Suh JM, Song JH, Kim DW, Kim H, Chung HK, Hwang JH, Kim JM, Hwang ES, Chung J, Han JH, Cho BY, Ro HK, Shong M (2003) Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J Biol Chem 278(24):21960–21971

    Article  CAS  PubMed  Google Scholar 

  82. Liu YY, Zhang X, Ringel MD, Jhiang SM (2012) Modulation of sodium iodide symporter expression and function by LY294002, Akti-1/2 and Rapamycin in thyroid cells. Endocr Relat Cancer 19(3): 291–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. de Souza EC, Padron AS, Braga WM, de Andrade BM, Vaisman M, Nasciutti LE, Ferreira AC, de Carvalho DP (2010) MTOR downregulates iodide uptake in thyrocytes. J Endocrinol 206(1):113–120

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Katie Kubek, Maria Magnifico, and Amy Erickson for their support in writing this chapter, both in terms of doing the laboratory work described here and for the intellectual input that they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Devine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Devine, P.J. (2014). Evaluating Endocrine Disruption In Vitro. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics