Skip to main content

Animal Models to Evaluate Bacterial Biofilm Development

  • Protocol
  • First Online:
Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models — two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356

    Article  CAS  Google Scholar 

  3. Hall-Stoodley L, Stoodley P, Kathju S et al (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145

    Article  CAS  PubMed  Google Scholar 

  4. Moser C, Jensen PO, Kobayashi O et al (2002) Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol 127:206–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Moser C, Hougen HP, Song Z et al (1999) Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. APMIS 107: 1093–1100

    Article  CAS  PubMed  Google Scholar 

  6. Prabhakara R, Harro JM, Leid JG et al (2011) Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 79:5010–5018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Trøstrup H, Thomsen K, Christophersen LJ et al (2013) Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen 21:292–299

    Article  PubMed  Google Scholar 

  8. Brady RA, Leid JG, Calhoun JH et al (2008) Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22

    Article  CAS  PubMed  Google Scholar 

  9. Christensen LD, Moser C, Jensen PO et al (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen SS, Shand GH, Hansen BL, Hansen GN (1990) Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS 98:203–211

    Article  CAS  PubMed  Google Scholar 

  11. Moser C, Johansen HK, Song Z et al (1997) Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. APMIS 105:838–842

    Article  CAS  PubMed  Google Scholar 

  12. Calum H, Moser C, Jensen PO et al (2009) Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol 156:102–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li D, Gromov K, Soballe K et al (2008) Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthop Res 26:96–105

    Article  PubMed Central  PubMed  Google Scholar 

  14. Prabhakara R, Harro JM, Leid JG et al (2011) Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79:1789–1796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Harro JM, Daugherty S, Bruno VM et al (2013) Draft genome sequence of the methicillin-resistant Staphylococcus aureus isolate MRSA-M2. Genome Announc 1:e00037-12

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphylococcus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Brady RA, O’May GA, Leid JG et al (2011) Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect Immun 79:1797–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Moser C, Van Gennip M, Bjarnsholt T et al (2009) Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 117:95–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. van Gennip M, Moser C, Christensen LD et al (2009) Augmented effect of early antibiotic treatment in mice with experimental lung infections due to sequentially adapted mucoid strains of Pseudomonas aeruginosa. J Antimicrob Chemother 64:1241–1250

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Mark Shirtliff contributed fully as a co-author for this chapter and should be regarded as such.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thomsen, K., Trøstrup, H., Moser, C. (2014). Animal Models to Evaluate Bacterial Biofilm Development. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics