Skip to main content

Aqueous Two-Phase System Technology for Patterning Bacterial Communities and Biofilms

  • Protocol
  • First Online:
Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

We describe a novel method which makes use of polymer-based aqueous two-phase systems to pattern bacterial communities inside Petri dishes. This method allows us to culture submillimeter-sized bacterial communities in spatially distinct spots while maintaining a degree of chemical connectedness to each other through the aqueous phase. Given sufficient time, these bacterial cultures develop biofilms, each corresponding to the footprint of the droplet spot. This method can be used to study the interactions between bacterial communities and biofilms spotted adjacent to each other. Furthermore, it can be extended to study the interactions between different bacterial communities and an underlying epithelial cell layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McEldowney S, Fletcher M (1987) Adhesion of bacteria from mixed cell suspension to solid surfaces. Arch Microbiol 148:57–62

    Article  CAS  PubMed  Google Scholar 

  2. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  3. Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    CAS  PubMed  Google Scholar 

  5. Bansal T, Englert D, Lee J et al (2007) Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157: H7 chemotaxis, colonization, and gene expression. Infect Immun 75:4597–4607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sperandio V, Torres AG, Jarvis B et al (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100:8951–8956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Richardson AE, Barea JM, McNeill AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  8. Weibel DB, Lee A, Mayer M et al (2005) Bacterial printing press that regenerates its ink: contact-printing bacteria using hydrogel stamps. Langmuir 21:6436–6442

    Article  CAS  PubMed  Google Scholar 

  9. Eun YJ, Weibel DB (2009) Fabrication of microbial biofilm arrays by geometric control of cell adhesion. Langmuir 25:4643–4654

    Article  CAS  PubMed  Google Scholar 

  10. Kim HJ, Boedicker JQ, Choi JW et al (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci U S A 105:18188–18193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim J, Hegde M, Jayaraman A (2010) Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab Chip 10:43–50

    Article  CAS  PubMed  Google Scholar 

  12. Tavana H, Jovic A, Mosadegh B et al (2009) Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat Mater 8:736–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tavana H, Mosadegh B, Takayama S (2010) Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv Mater 22:2628–2631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yaguchi T, Lee S, Choi WS et al (2010) Micropatterning bacterial suspensions using aqueous two phase systems. Analyst 135:2848–2852

    Article  CAS  PubMed  Google Scholar 

  15. Yaguchi T, Dwidar M, Byun CK et al (2012) Aqueous two-phase system-derived biofilms for bacterial interaction studies. Biomacromolecules 13:2655–2661

    Article  CAS  PubMed  Google Scholar 

  16. Byun CK, Hwang H, Choi WS et al (2013) Productive chemical interaction between a bacterial microcolony couple is enhanced by periodic relocation. J Am Chem Soc 135:2242–2247

    Article  CAS  PubMed  Google Scholar 

  17. Dwidar M, Leung BM, Yaguchi T et al (2013) Patterning bacterial communities on epithelial cells. PLoS One 8:e67165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Frampton JP, White JB, Abraham AT et al (2013) Cell co-culture patterning using aqueous two-phase systems. J Vis Exp. 73: e50304 doi:10.3791/50304

    Google Scholar 

  19. Tomlin KL, Clark SRD, Ceri H (2004) Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J Microbiol Meth 57:95–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Toshiyuki Yaguchi at Nagoya Institute of Technology, Japan, and Dr. Brendan M. Leung at the University of Michigan, USA, for their contributions in establishing the protocols discussed in this chapter.

This work was supported by a grant from the Creativity and Innovation Project funded by Ulsan National Institute of Science and Technology (UNIST) (Grant #1.120051.01) and by the World Class University (WCU) program (No. R322008000200540) through the National Research Foundation of Korea (NRF) as funded by the Ministry of Education, Science and Technology (MEST). The authors appreciate the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dwidar, M., Takayama, S., Mitchell, R.J. (2014). Aqueous Two-Phase System Technology for Patterning Bacterial Communities and Biofilms. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics