Skip to main content

Nonmammalian Model Systems to Investigate Fungal Biofilms

  • Protocol
  • First Online:
Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Medical advances have resulted in an increase in the number of patients in immunocompromised states, vulnerable to infection, or individuals fitted with medical devices that form niches for microbial infections. These infections are difficult to treat and have significant morbidity and mortality rates. An important factor in the pathogenesis of fungal diseases is the development of biofilm-forming communities, enabling the invasion of host tissues and resistance to antimicrobial compounds. To investigate the genetic requirements for filamentation and seek compounds that inhibit the process, invertebrate hosts are employed as models of in vivo infection. The purpose of our review is to highlight methods that can be utilized to investigate fungal filamentation, an important step in the development of biofilms, in the invertebrate hosts Galleria mellonella, Caenorhabditis elegans, and Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  2. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  CAS  PubMed  Google Scholar 

  3. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Romling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561

    Article  CAS  PubMed  Google Scholar 

  8. Nobile CJ, Mitchell AP (2007) Microbial biofilms: e pluribus unum. Curr Biol 17:R349–R353

    Article  CAS  PubMed  Google Scholar 

  9. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    CAS  PubMed  Google Scholar 

  10. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    Article  CAS  PubMed  Google Scholar 

  11. Weber R, Ruppik M, Rickenbach M et al (2013) Decreasing mortality and changing patterns of causes of death in the Swiss HIV Cohort Study. HIV Med 14:195–207

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Wang H, Kantarjian H et al (2013) Trends in chronic myeloid leukemia incidence and survival in the United States from 1975–2009. Leuk Lymphoma 54:1411–1417

    Article  PubMed  Google Scholar 

  13. Tabah A, Koulenti D, Laupland K et al (2012) Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med 38:1930–1945

    Article  PubMed  Google Scholar 

  14. Pappas PG, Alexander BD, Andes DR et al (2010) Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 50:1101–1111

    Article  PubMed  Google Scholar 

  15. Sipsas NV, Kontoyiannis DP (2012) Invasive fungal infections in patients with cancer in the intensive care unit. Int J Antimicrob Agents 39:464–471

    Article  CAS  PubMed  Google Scholar 

  16. Anastassopoulou CG, Fuchs BB, Mylonakis E (2011) Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr Pharm Des 17:1225–1233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lionakis MS (2011) Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence 2:521–527

    Article  PubMed Central  PubMed  Google Scholar 

  18. Prithiviraj B, Bais HP, Jha AK et al (2005) Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant J 42:417–432

    Article  CAS  PubMed  Google Scholar 

  19. Mulcahy H, Sibley CD, Surette MG et al (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7:e1002299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Atkinson S, Goldstone RJ, Joshua GW et al (2011) Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog 7:e1001250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fuchs BB, O’Brien E, Khoury JB et al (2010) Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1:475–482

    Article  PubMed  Google Scholar 

  22. Fuchs BB, Eby J, Nobile CJ et al (2010) Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 12:488–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Breger J, Fuchs BB, Aperis G et al (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3:e18

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cruz MR, Graham CE, Gagliano BC et al (2013) Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun 81:189–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Muhammed M, Coleman JJ, Mylonakis E (2012) Caenorhabditis elegans: a nematode infection model for pathogenic fungi. Methods Mol Biol 845:447–454

    Article  CAS  PubMed  Google Scholar 

  26. Chamilos G, Lewis RE, Hu J et al (2008) Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci U S A 105:9367–9372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lionakis MS, Kontoyiannis DP (2012) Drosophila melanogaster as a model organism for invasive aspergillosis. Methods Mol Biol 845:455–468

    Article  CAS  PubMed  Google Scholar 

  28. Lemaitre B, Nicolas E, Michaut L et al (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  PubMed  Google Scholar 

  29. Lionakis MS, Lewis RE, May GS et al (2005) Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 191:1188–1195

    Article  CAS  PubMed  Google Scholar 

  30. Chamilos G, Lionakis MS, Lewis RE et al (2006) Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis 193:1014–1022

    Article  CAS  PubMed  Google Scholar 

  31. Mowlds P, Kavanagh K (2008) Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165:5–12

    Article  PubMed  Google Scholar 

  32. Wojda I, Kowalski P, Jakubowicz T (2009) Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. J Insect Physiol 55:525–531

    Article  CAS  PubMed  Google Scholar 

  33. Beanan MJ, Strome S (1992) Characterization of a germ-line proliferation mutation in C. elegans. Development 116:755–766

    CAS  PubMed  Google Scholar 

  34. Kim DH, Feinbaum R, Alloing G et al (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626

    Article  CAS  PubMed  Google Scholar 

  35. Kucherenko MM, Marrone AK, Rishko VM et al (2010) Paraffin-embedded and frozen sections of Drosophila adult muscles. J Vis Exp 46:2438

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios Mylonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arvanitis, M., Fuchs, B.B., Mylonakis, E. (2014). Nonmammalian Model Systems to Investigate Fungal Biofilms. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics