Skip to main content

Methods for Dynamic Investigations of Surface-Attached In Vitro Bacterial and Fungal Biofilms

  • Protocol
  • First Online:
Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Three dynamic models for the investigation of in vitro biofilm formation are described in this chapter. In the 6-well plate assay presented here, the placing of the plate on a rotating platform provides shear, thereby making the system dynamic with respect to the static microtiter assay.

The second reported model, especially suitable for harvesting high amounts of cells for transcriptomic or proteomic investigations, is based on numerous glass beads placed in a flask incubated with shaking on a rotating platform, thus increasing the surface area for biofilm formation. Finally, the flow-cell system, that is the driving model for elucidating the biofilm-forming process in vitro as well as the biofilm tolerance towards antibiotics and host defense components, is illustrated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Christensen GD, Simpson WA, Younger JJ et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    PubMed Central  PubMed  CAS  Google Scholar 

  2. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  3. Ceri H, Olson ME, Stremick C et al (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Lee B, Haagensen JA, Ciofu O et al (2005) Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Hengzhuang W, Wu H, Ciofu O et al (2011) Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55:4469–4474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Christensen BB, Sternberg C, Andersen JB et al (1999) Molecular tools for study of biofilm physiology. Methods Enzymol 310: 20–42

    Article  PubMed  CAS  Google Scholar 

  7. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Goeres DM, Hamilton MA, Beck NA et al (2009) A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat Protoc 4: 783–788

    Article  PubMed  CAS  Google Scholar 

  9. Zelver N, Hamilton M, Pitts B et al (1999) Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol 310:608–628

    Article  PubMed  CAS  Google Scholar 

  10. Wolfaardt GM, Lawrence JR, Robarts RD et al (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Klausen M, Heydorn A, Ragas P et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  PubMed  CAS  Google Scholar 

  12. Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68

    Article  PubMed  CAS  Google Scholar 

  13. Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56: 187–209

    Article  PubMed  CAS  Google Scholar 

  15. Bjarnsholt T, Jensen PØ, Burmølle M et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    Article  PubMed  CAS  Google Scholar 

  16. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68: 223–240

    Article  PubMed  CAS  Google Scholar 

  17. Alhede M, Bjarnsholt T, Jensen PØ et al (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508

    Article  PubMed  CAS  Google Scholar 

  18. Jensen PO, Bjarnsholt T, Phipps R et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153: 1329–1338

    Article  PubMed  CAS  Google Scholar 

  19. van Gennip M, Christensen LD, Alhede M et al (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117: 537–546

    Article  PubMed  CAS  Google Scholar 

  20. Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Peters BM, Ovchinnikova ES, Krom BP et al (2012) Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology 158: 2975–2986

    Article  PubMed  CAS  Google Scholar 

  22. Bjerkan G, Witso E, Bergh K (2009) Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop 80:245–250

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphylococcus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Brady RA, O’May GA, Leid JG et al (2011) Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect Immun 79:1797–1803

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Abrámoff MD, Magalhâes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–41

    Google Scholar 

  26. Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413

    Article  PubMed  CAS  Google Scholar 

  27. Heydorn A, Nielsen AT, Hentzer M et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    PubMed  CAS  Google Scholar 

  28. Daims H, Lucker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  PubMed  CAS  Google Scholar 

  29. Southey-Pillig CJ, Davies DG, Sauer K (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187:8114–8126

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Crusz SA, Popat R, Rybtke MT et al (2012) Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28:835–842

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Sternberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sternberg, C., Bjarnsholt, T., Shirtliff, M. (2014). Methods for Dynamic Investigations of Surface-Attached In Vitro Bacterial and Fungal Biofilms. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics