Skip to main content

HSV-1 Biology and Life Cycle

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1144))

Abstract

Herpes simplex virus type 1 (HSV-1) is a common and important human pathogen that has been studied in a wide variety of contexts for several decades. This book presents chapters on protocols on many strands of HSV-1 research that are currently in use in leading laboratories. This chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of the virus and its replication in cultured cells, the diseases caused by the virus, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weller SK (2011) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK

    Google Scholar 

  2. Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (2006) Fields virology. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  3. Eisenberg RJ, Heldwein EE, Cohen GH, Krummenacher C (2011) Recent progress in understanding herpes simplex virus entry: relationship of structure to function. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 131–152

    Google Scholar 

  4. Mettenleiter TC (2002) Herpesvirus assembly and egress. J Virol 76:1537–1547

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Abaitua F, Souto RN, Browne H, Daikoku T, O’Hare P (2009) Characterization of the herpes simplex virus (HSV)-1 tegument protein VP1-2 during infection with the HSV temperature-sensitive mutant tsB7. J Gen Virol 90:2353–2363

    Article  PubMed  CAS  Google Scholar 

  6. Maringer K, Stylianou J, Elliott G (2012) A network of protein interactions around the herpes simplex virus tegument protein VP22. J Virol 86:12971–12982

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Sciortino MT, Taddeo B, Giuffre-Cuculletto M, Medici MA, Mastino A, Roizman B (2007) Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the defect in the UL41 gene encoding host shutoff RNase. J Virol 81:10924–10932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. DeLuca NA (2011) Functions and mechanism of action of the herpes simplex virus regulatory protein, ICP4. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 17–38

    Google Scholar 

  9. Sandri-Goldin RM (2011) The functions and activities of HSV-1 ICP27, a multifunctional regulator of gene expression. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 39–50

    Google Scholar 

  10. Boutell C, Everett RD (2013) The regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 94:465–481

    Article  PubMed  CAS  Google Scholar 

  11. Everett RD (2006) The roles of ICP0 during HSV-1 infection. In: Sandri-Goldin RM (ed) Alpha herpesviruses. Molecular and cellular biology. Caister Academic Press, Wymondham, pp 39–64

    Google Scholar 

  12. Everett RD (2011) The role of ICP0 in counteracting intrinsic cellular resistance to virus infection. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 51–72

    Google Scholar 

  13. Hagglund R, Roizman B (2004) Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78:2169–2178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Rice SA (2011) Multiple roles of immediate-early protein ICP22 in HSV-1 replication. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 73–88

    Google Scholar 

  15. Ward SA, Weller SK (2011) HSV-1 DNA replication. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 89–112

    Google Scholar 

  16. Wilkinson DE, Weller SK (2003) The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life 55:451–458

    Article  PubMed  CAS  Google Scholar 

  17. Sourvinos G, Everett RD (2002) Visualization of parental HSV-1 genomes and replication compartments in association with ND10 in live infected cells. EMBO J 21:4989–4997

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Conway JF, Homa FL (2011) Nucleocapsid structure, assembly and DNA packaging of herpes simplex virus. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 175–194

    Google Scholar 

  19. Mettenleiter TC, Muller F, Granzow H, Klupp BG (2013) The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol 15:170–178

    Article  PubMed  CAS  Google Scholar 

  20. Bloom DC, Kwiatkowski DL (2011) HSV-1 latency and the roles of LATs. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 295–316

    Google Scholar 

  21. Efstathiou S, Preston CM (2005) Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119

    Article  PubMed  CAS  Google Scholar 

  22. Nicoll MP, Proenca JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221

    Article  PubMed  CAS  Google Scholar 

  24. Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, Sawtell N, Labetoulle M, Lomonte P (2012) HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 8:e1002852

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC (2013) Mutational inactivation of herpes simplex virus 1 MicroRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87:6589–6603

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Nicoll MP, Proenca JT, Connor V, Efstathiou S (2012) Influence of herpes simplex virus 1 latency-associated transcripts on the establishment and maintenance of latency in the ROSA26R reporter mouse model. J Virol 86:8848–8858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Proenca JT, Coleman HM, Connor V, Winton DJ, Efstathiou S (2008) A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Proenca JT, Coleman HM, Nicoll MP, Connor V, Preston CM, Arthur J, Efstathiou S (2011) An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 92:2575–2585

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Phipps W, Saracino M, Magaret A, Selke S, Remington M, Huang ML, Warren T, Casper C, Corey L, Wald A (2011) Persistent genital herpes simplex virus-2 shedding years following the first clinical episode. J Infect Dis 203:180–187

    Article  PubMed Central  PubMed  Google Scholar 

  31. Schiffer JT, Corey L (2013) Rapid host immune response and viral dynamics in herpes simplex virus-2 infection. Nat Med 19:280–290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Ferenczy MW, DeLuca NA (2009) Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes. J Virol 83:8514–8524

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Ferenczy MW, DeLuca NA (2011) Reversal of heterochromatic silencing of quiescent herpes simplex virus type 1 by ICP0. J Virol 85:3424–3435

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Harris RA, Everett RD, Zhu XX, Silverstein S, Preston CM (1989) Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol 63:3513–3515

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    Article  PubMed  CAS  Google Scholar 

  36. Sobol PT, Mossman KL (2011) Mechanisms of subversion of type I interferon responses by alphaherpesviruses. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 219–336

    Google Scholar 

  37. Orzalli MH, DeLuca NA, Knipe DM (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci USA 109:E3008–E3017

    Article  PubMed Central  PubMed  Google Scholar 

  38. Jerome KR (2011) Immunity to herpes simplex virus. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 331–350

    Google Scholar 

  39. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L (2007) Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Zhu J, Peng T, Johnston C, Phasouk K, Kask AS, Klock A, Jin L, Diem K, Koelle DM, Wald A, Robins H, Corey L (2013) Immune surveillance by CD8alphaalpha+ skin-resident T cells in human herpes virus infection. Nature 497:494–497

    Article  PubMed  CAS  Google Scholar 

  41. Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415

    Article  PubMed  CAS  Google Scholar 

  42. Ferenczy MW, Ranayhossaini DJ, Deluca NA (2011) Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 85:4993–5002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Gu H, Roizman B (2007) Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci USA 104:17134–17139

    Article  PubMed Central  PubMed  Google Scholar 

  44. Gu H, Roizman B (2009) The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. J Virol 83:181–187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Glass M, Everett RD (2013) Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87:2174–2185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Everett RD, Boutell C, Hale BG (2013) Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 11:400–411

    Article  PubMed  CAS  Google Scholar 

  47. Tavalai N, Stamminger T (2008) New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221

    Article  PubMed  CAS  Google Scholar 

  48. Cuchet-Lourenco D, Boutell C, Lukashchuk V, Grant K, Sykes A, Murray J, Orr A, Everett RD (2011) SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog 7:e1002123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in the author’s laboratory is funded by the Medical Research Council. The author is very grateful for the image provided by Dr. Frazer Rixon that is presented in Fig. 1a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Everett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Everett, R.D. (2014). HSV-1 Biology and Life Cycle. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus. Methods in Molecular Biology, vol 1144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0428-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0428-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0427-3

  • Online ISBN: 978-1-4939-0428-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics