Skip to main content

Imaging the Mitotic Spindle by Spinning Disk Microscopy in Tobacco Suspension Cultured Cells

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Plants are valuable systems for analyzing the acentriolar mitotic spindle. We have developed methods for imaging the mitotic spindle in living tobacco (Nicotiana tabacum) suspension culture cells expressing GFP-α-tubulin. The methods allow the spindle to be observed in living cells at high spatial and temporal resolution and rely on water immersion objectives, spinning disk optics, and high-sensitivity cameras. Here, we describe these methods and provide step-by-step protocols for certain key steps. We also describe a method for application and removal of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baskin TI, Cande WZ (1990) The structure and function of the mitotic spindle in flowering plants. Annu Rev Plant Physiol Plant Mol Biol 41:277–315

    Article  Google Scholar 

  2. De Mey J, Lambert AM et al (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci U S A 79:1898–1902

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bannigan A, Scheible WR et al (2007) A conserved role for kinesin-5 in plant mitosis. J Cell Sci 120:2819–2827

    Article  CAS  PubMed  Google Scholar 

  4. Ambrose JC, Li WX et al (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rasmussen CG, Humphries JA et al (2011) Determination of symmetric and asymmetric division planes in plant cells. Annu Rev Plant Biol 62:387–409

    Article  CAS  PubMed  Google Scholar 

  6. Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Article  Google Scholar 

  7. Hiwatashi Y, Obara M et al (2008) Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20:3094–3106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kumagai-Sano F, Hayashi T et al (2006) Cell cycle synchronization of tobacco BY-2 cells. Nat Protoc 1:2621–2627

    Article  CAS  PubMed  Google Scholar 

  9. An GH (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol 79: 568–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19:226–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dhonukshe P, Vischer N et al (2006) Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells. J Cell Sci 119:3193–3205

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi T, Sano T et al (2007) Contribution of anaphase B to chromosome separation in higher plant cells estimated by image processing. Plant Cell Physiol 48:1509–1513

    Article  CAS  PubMed  Google Scholar 

  13. Gibson SF, Lanni F (1991) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in 3-dimensional light-microscopy. J Opt Soc Am A 8:1601–1613

    Article  CAS  Google Scholar 

  14. Kumagai F, Yoneda A et al (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42:723–732

    Article  CAS  PubMed  Google Scholar 

  15. Nagata T, Nemoto Y et al (1992) Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  16. Falconer MM, Donaldson G et al (1988) MTOCs in higher-plant cells—an immunofluorescent study of microtubule assembly sites following depolymerization by APM. Protoplasma 144:46–55

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Invitation Fellowship Programs for Research in Japan (no. L-08551) to T.B. and Grant-in-Aid for Scientific Research (B) (no. 21370026) to T.M. from the Japanese Society for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Murata, T., Baskin, T.I. (2014). Imaging the Mitotic Spindle by Spinning Disk Microscopy in Tobacco Suspension Cultured Cells. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics