Skip to main content

Analysis of Mitotic Protein Dynamics and Function in Drosophila Embryos by Live Cell Imaging and Quantitative Modeling

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Mitosis depends upon the mitotic spindle, a dynamic protein machine that uses ensembles of dynamic microtubules (MTs) and MT-based motor proteins to assemble itself, control its own length (pole–pole spacing), and segregate chromosomes during anaphase A (chromosome-to-pole motility) and anaphase B (spindle elongation). In this review, we describe how the molecular and biophysical mechanisms of these processes can be analyzed in the syncytial Drosophila embryo by combining (1) time-lapse imaging and other fluorescence light microscopy techniques to study the dynamics of mitotic proteins such as tubulins, mitotic motors, and chromosome or centrosome proteins; (2) the perturbation of specific mitotic protein function using microinjected inhibitors (e.g., antibodies) or mutants to infer protein function; and (3) mathematical modeling of the qualitative models derived from these experiments, which can then be used to make predictions which are in turn tested experimentally. We provide details of the methods we use for embryo preparation, fluorescence imaging, and mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brust-Mascher I, Scholey JM (2007) Mitotic spindle dynamics in Drosophila. Int Rev Cytol 259:139–172

    Article  CAS  PubMed  Google Scholar 

  2. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34: 1–15

    Article  CAS  PubMed  Google Scholar 

  3. Buster DW, Zhang D, Sharp DJ (2007) Poleward tubulin flux in spindles: regulation and function in mitotic cells. Mol Biol Cell 18:3094–3104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109: 637–652

    Article  CAS  PubMed  Google Scholar 

  5. Waterman-Storer C, Desai A, Salmon ED (1999) Fluorescent speckle microscopy of spindle microtubule assembly and motility in living cells. Methods Cell Biol 61:155–173

    Article  CAS  PubMed  Google Scholar 

  6. Waterman-Storer CM, Desai A, Bulinski JC et al (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8:1227–1230

    Article  CAS  PubMed  Google Scholar 

  7. Cheerambathur DK, Brust-Mascher I, Civelekoglu-Scholey G et al (2008) Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states. J Cell Biol 182:429–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Brust-Mascher I, Civelekoglu-Scholey G, Kwon M et al (2004) Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc Natl Acad Sci U S A 101:15938–15943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Civelekoglu-Scholey G, Sharp DJ, Mogilner A et al (2006) Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys J 90: 3966–3982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Civelekoglu-Scholey G, Tao L, Brust-Mascher I et al (2010) Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. J Cell Biol 188:49–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cytrynbaum EN, Sommi P, Brust-Mascher I et al (2005) Early spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics. Mol Biol Cell 16:4967–4981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Brust-Mascher I, Scholey JM (2009) Microinjection techniques for studying mitosis in the Drosophila melanogaster syncytial embryo. J Vis Exp (31): 1382

    Google Scholar 

  13. Brust-Mascher I, Sommi P, Cheerambathur DK et al (2009) Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol Biol Cell 20: 1749–1762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cheerambathur DK, Civelekoglu-Scholey G, Brust-Mascher I et al (2007) Quantitative analysis of an anaphase B switch: predicted role for a microtubule catastrophe gradient. J Cell Biol 177:995–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  CAS  PubMed  Google Scholar 

  17. Lele T, Wagner SR, Nickerson JA et al (2006) Methods for measuring rates of protein binding to insoluble scaffolds in living cells: histone H1-chromatin interactions. J Cell Biochem 99:1334–1342

    Article  CAS  PubMed  Google Scholar 

  18. Salmon ED, Leslie RJ, Saxton WM et al (1984) Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol 99:2165–2174

    Article  CAS  PubMed  Google Scholar 

  19. Verde F, Dogterom M, Stelzer E et al (1992) Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 118: 1097–1108

    Article  CAS  PubMed  Google Scholar 

  20. Sharp DJ, McDonald KL, Brown HM et al (1999) The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J Cell Biol 144:125–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maiato H, Hergert PJ, Moutinho-Pereira S et al (2006) The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma 115:469–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hays TS, Salmon ED (1990) Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules. J Cell Biol 110:391–404

    Article  CAS  PubMed  Google Scholar 

  23. Toba S, Watanabe TM, Yamaguchi-Okimoto L et al (2006) Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci U S A 103:5741–5745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Valentine MT, Fordyce PM, Krzysiak TC et al (2006) Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol 8: 470–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Marshall WF, Marko JF, Agard DA et al (2001) Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr Biol 11:569–578

    Article  CAS  PubMed  Google Scholar 

  26. Wollman R, Civelekoglu-Scholey G, Scholey JM et al (2008) Reverse engineering of force integration during mitosis in the Drosophila embryo. Mol Syst Biol 4:195

    Article  PubMed Central  PubMed  Google Scholar 

  27. Civelekoglu-Scholey G, Scholey JM (2010) Mitotic force generators and chromosome segregation. Cell Mol Life Sci 67:2231–2250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kwon M, Morales-Mulia S, Brust-Mascher I et al (2004) The chromokinesin, KLP3A, drives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility. Mol Biol Cell 15:219–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sharp DJ, Yu KR, Sisson JC et al (1999) Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat Cell Biol 1:51–54

    Article  CAS  PubMed  Google Scholar 

  30. Brust-Mascher I, Scholey JM (2002) Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol Biol Cell 13: 3967–3975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rogers SL, Rogers GC, Sharp DJ et al (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158:873–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rusan NM, Tulu US, Fagerstrom C et al (2002) Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport. J Cell Biol 158:997–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2:718–723

    Article  CAS  PubMed  Google Scholar 

  34. Tao L, Mogilner A, Civelekoglu-Scholey G et al (2006) A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr Biol 16:2293–2302

    Article  CAS  PubMed  Google Scholar 

  35. Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308–312

    Article  CAS  PubMed  Google Scholar 

  36. Krzysiak TC, Grabe M, Gilbert SP (2008) Getting in sync with dimeric Eg5. Initiation and regulation of the processive run. J Biol Chem 283:2078–2087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This protocol is currently used in our laboratory and has been refined over the years by many people including Drs. David Sharp, Mijung Kwon, Patrizia Sommi, and Dhanya Cheerambathur. We thank Dr. Bill Sullivan (UCSC), who provided us with excellent advice on the manipulation and microinjection of early Drosophila embryos when our work in this system was being initiated. We thank all members of the Scholey laboratory. Our work on mitosis in Drosophila is supported by NIH grant GM55507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Scholey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brust-Mascher, I., Civelekoglu-Scholey, G., Scholey, J.M. (2014). Analysis of Mitotic Protein Dynamics and Function in Drosophila Embryos by Live Cell Imaging and Quantitative Modeling. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics