Skip to main content

Prediction of Protein–Protein Binding Affinities from Unbound Protein Structures

  • Protocol
  • First Online:
Computational Methods for Estimating the Kinetic Parameters of Biological Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2385))

Abstract

Proteins are the workhorses of cells to carry out sophisticated and complex cellular processes. Such processes require a coordinated and regulated interactions between proteins that are both time and location specific. The strength, or binding affinity, of protein–protein interactions ranges between the micro- and the nanomolar association constant, often dictating the molecular mechanisms underlying the interaction and the longevity of the complex, i.e., transient or permanent. In consequence, there is a need to quantify the strength of protein–protein interactions for biological, biomedical, and biotechnological applications. While experimental methods are labor intensive and costly, computational ones are useful tools to predict the affinity of protein–protein interactions. In this chapter, we review the methods developed by us to address this question. We briefly present two methods to comprehend the structure of the protein complex derived by either comparative modeling or docking. Then we introduce BADOCK, a method to predict the binding energy without requiring the structure of the protein complex, thus overcoming one of the major limitations of structure-based methods for the prediction of binding affinity. BADOCK utilizes the structure of unbound proteins and the protein docking sampling space to predict protein–protein binding affinities. We present step-by-step protocols to utilize these methods, describing the inputs and potential pitfalls as well as their respective strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin S, Pang X, Zhou H-X (2011) Automated prediction of protein association rate constants. Structure 19(12):1744–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schreiber G, Haran G, Zhou H-X (2009) Fundamental aspects of protein-protein association kinetics. Chem Rev 109(3):839–860

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Garcia J, Bonet J, Guney E, Fornes O, Planas J, Oliva B (2012) Networks of protein–protein interactions: from uncertainty to molecular details. Mol Inform 31(5):342–362

    Article  CAS  PubMed  Google Scholar 

  4. Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3(10):791–801

    Article  CAS  PubMed  Google Scholar 

  5. Willander M, Al-Hilli S (2009) Analysis of biomolecules using surface plasmons. Methods Mol Biol 544:201–229

    Article  CAS  PubMed  Google Scholar 

  6. Lin T, Scott BL, Hoppe AD, Chakravarty S (2018) FRETting about the affinity of bimolecular protein-protein interactions. Protein Sci 27(10):1850–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19(4):338–343

    Article  CAS  PubMed  Google Scholar 

  8. Dries DR, Newton AC (2008) Kinetic analysis of the interaction of the C1 domain of protein kinase C with lipid membranes by stopped-flow spectroscopy. J Biol Chem 283(12):7885–7893

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Simonetti FL, Goncearenco A, Panchenko AR (2016) MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Res 44(W1):W494–W501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vangone A, Bonvin AM (2015) Contacts-based prediction of binding affinity in protein-protein complexes. Elife 4:e07454

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abbasi WA, Asif A, Ben-Hur A, Minhas FUAA (2018) Learning protein binding affinity using privileged information. BMC Bioinformatics 19(1):425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yugandhar K, Gromiha MM (2014) Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches. Proteins 82(9):2088–2096

    Article  CAS  PubMed  Google Scholar 

  13. Horton N, Lewis M (1992) Calculation of the free energy of association for protein complexes. Protein Sci 1(1):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moal IH, Agius R, Bates PA (2011) Protein-protein binding affinity prediction on a diverse set of structures. Bioinformatics 27(21):3002–3009

    Article  CAS  PubMed  Google Scholar 

  15. Marín-López MA, Planas-Iglesias J, Aguirre-Plans J, Bonet J, Garcia-Garcia J, Fernandez-Fuentes N et al (2018) On the mechanisms of protein interactions: predicting their affinity from unbound tertiary structures. Bioinformatics 34(4):592–598

    Article  PubMed  CAS  Google Scholar 

  16. Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35(12):1050–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGuffee SR, Elcock AH (2010) Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput Biol 6(3):e1000694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yu I, Mori T, Ando T, Harada R, Jung J, Sugita Y et al (2016) Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. Elife 01:5

    Google Scholar 

  19. Mika JT, Poolman B (2011) Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin Biotechnol 22(1):117–126

    Article  CAS  PubMed  Google Scholar 

  20. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11(1):114–119

    Article  CAS  PubMed  Google Scholar 

  21. Planas-Iglesias J, Marin-Lopez MA, Bonet J, Garcia-Garcia J, Oliva B (2013) iLoops: a protein-protein interaction prediction server based on structural features. Bioinformatics 29(18):2360–2362

    Article  CAS  PubMed  Google Scholar 

  22. Levinthal C (1968) Are there pathways for protein folding? J Chem Phys 65:44–45

    Google Scholar 

  23. Wass MN, Fuentes G, Pons C, Pazos F, Valencia A (2011) Towards the prediction of protein interaction partners using physical docking. Mol Syst Biol 7:469

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schweke H, Mucchielli M-H, Sacquin-Mora S, Bei W, Lopes A (2020) Protein interaction energy landscapes are shaped by functional and also non-functional partners. J Mol Biol 432(4):1183–1198

    Article  CAS  PubMed  Google Scholar 

  25. Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 99(5):2754–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pechmann S, Levy ED, Tartaglia GG, Vendruscolo M (2009) Physicochemical principles that regulate the competition between functional and dysfunctional association of proteins. Proc Natl Acad Sci U S A 106(25):10159–10164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deeds EJ, Ashenberg O, Gerardin J, Shakhnovich EI (2007) Robust protein protein interactions in crowded cellular environments. Proc Natl Acad Sci U S A 104(38):14952–14957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karanicolas J, Corn JE, Chen I, Joachimiak LA, Dym O, Peck SH et al (2011) A de novo protein binding pair by computational design and directed evolution. Mol Cell 42(2):250–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garcia-Seisdedos H, Empereur-Mot C, Elad N, Levy ED (2017) Proteins evolve on the edge of supramolecular self-assembly. Nature 548(7666):244–247

    Article  CAS  PubMed  Google Scholar 

  30. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285(5):2177–2198

    Article  CAS  PubMed  Google Scholar 

  31. Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites. Proteins 47(3):334–343

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Keskin O, Ma B, Nussinov R, Liang J (2004) Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344(3):781–795

    Article  CAS  PubMed  Google Scholar 

  33. Keskin O, Ma B, Nussinov R (2005) Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345(5):1281–1294

    Article  CAS  PubMed  Google Scholar 

  34. McCammon JA (1998) Theory of biomolecular recognition. Curr Opin Struct Biol 8(2):245–249

    Article  CAS  PubMed  Google Scholar 

  35. Tsai H-HG, Reches M, Tsai C-J, Gunasekaran K, Gazit E, Nussinov R (2005) Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proc Natl Acad Sci U S A 102(23):8174–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolynes PG (2015) Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119:218–230

    Article  CAS  PubMed  Google Scholar 

  37. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: flexible induced-fit backbone refinement in molecular docking. Proteins 78(6):1503–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feliu E, Aloy P, Oliva B (2011) On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking. Protein Sci 20(3):529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vreven T, Hwang H, Pierce BG, Weng Z (2012) Prediction of protein-protein binding free energies. Protein Sci 21(3):396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10(1):47–53

    Article  CAS  PubMed  Google Scholar 

  42. Zhang QC, Petrey D, Garzón JI, Deng L, Honig B (2013) PrePPI: a structure-informed database of protein-protein interactions. Nucleic Acids Res 41(Database issue):D828–D833

    CAS  PubMed  Google Scholar 

  43. Poglayen D, Marín-López MA, Bonet J, Fornes O, Garcia-Garcia J, Planas-Iglesias J et al (2016) InteractoMIX: a suite of computational tools to exploit interactomes in biological and clinical research. Biochem Soc Trans 44(3):917–924

    Article  CAS  PubMed  Google Scholar 

  44. Meseguer A, Dominguez L, Bota PM, Aguirre-Plans J, Bonet J, Fernandez-Fuentes N et al (2020) Using collections of structural models to predict changes of binding affinity caused by mutations in protein-protein interactions. Protein Sci 29(10):2112–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Levy Y, Cho SS, Onuchic JN, Wolynes PG (2005) A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J Mol Biol 346(4):1121–1145

    Article  CAS  PubMed  Google Scholar 

  46. Andrusier N, Mashiach E, Nussinov R, Wolfson HJ (2008) Principles of flexible protein-protein docking. Proteins 73(2):271–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stein A, Rueda M, Panjkovich A, Orozco M, Aloy P (2011) A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks. Structure 19(6):881–889

    Article  CAS  PubMed  Google Scholar 

  48. Goh C-S, Milburn D, Gerstein M (2004) Conformational changes associated with protein-protein interactions. Curr Opin Struct Biol 14(1):104–109

    Article  CAS  PubMed  Google Scholar 

  49. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stranges PB, Kuhlman B (2013) A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci 22(1):74–82

    Article  CAS  PubMed  Google Scholar 

  51. Jankauskaite J, Jiménez-García B, Dapkunas J, Fernández-Recio J, Moal IH (2019) SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 35(3):462–469

    Article  CAS  PubMed  Google Scholar 

  52. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F et al (2014) The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363

    Article  CAS  PubMed  Google Scholar 

  53. Siebenmorgen T, Zacharias M (2020) Computational prediction of protein–protein binding affinities. WIREs Comput Mol Sci 10(3):e1448

    Article  CAS  Google Scholar 

  54. Siebenmorgen T, Zacharias M (2019) Evaluation of predicted protein-protein complexes by binding free energy simulations. J Chem Theory Comput 15(3):2071–2086

    Article  CAS  PubMed  Google Scholar 

  55. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67(4):1078–1086

    Article  CAS  PubMed  Google Scholar 

  56. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H et al (2017) The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 13(6):3031–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aguirre-Plans J, Meseguer A, Molina-Fernandez R, Marín-López MA, Jumde G, Casanova K, Bonet J, Fornes O, Fernandez-Fuentes N, Oliva B (2018) SPServer: Split-Statistical Potentials for the analysis of protein structures and protein-protein interactions. BMC Bioinformatics 22:4

    Article  CAS  Google Scholar 

  58. Takemura K, Matubayasi N, Kitao A (2018) Binding free energy analysis of protein-protein docking model structures by evERdock. J Chem Phys 148(10):105101

    Article  PubMed  CAS  Google Scholar 

  59. Barradas-Bautista D, Moal IH, Fernández-Recio J (2017) A systematic analysis of scoring functions in rigid-body protein docking: the delicate balance between the predictive rate improvement and the risk of overtraining. Proteins 85(7):1287–1297

    Article  CAS  PubMed  Google Scholar 

  60. Segura J, Marín-López MA, Jones PF, Oliva B, Fernandez-Fuentes N (2015) VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy. PLoS One 10(3):e0118107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Segura J, Jones PF, Fernandez-Fuentes N (2011) Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams. BMC Bioinformatics 12:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432

    Article  CAS  PubMed  Google Scholar 

  63. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Garcia J, Valls-Comamala V, Guney E, Andreu D, Muñoz FJ, Fernandez-Fuentes N et al (2017) iFrag: a protein–protein Interface prediction server based on sequence fragments. J Mol Biol 429(3):382–389

    Article  CAS  PubMed  Google Scholar 

  65. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  CAS  Google Scholar 

  66. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  67. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 86:2.9.1–2.9.37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldo Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meseguer, A., Bota, P., Fernández-Fuentes, N., Oliva, B. (2022). Prediction of Protein–Protein Binding Affinities from Unbound Protein Structures. In: Vanhaelen, Q. (eds) Computational Methods for Estimating the Kinetic Parameters of Biological Systems. Methods in Molecular Biology, vol 2385. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1767-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1767-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1766-3

  • Online ISBN: 978-1-0716-1767-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics