Skip to main content

miCLIP-MaPseq Identifies Substrates of Radical SAM RNA-Methylating Enzyme Using Mechanistic Cross-Linking and Mismatch Profiling

  • Protocol
  • First Online:
RNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2298))

Abstract

The family of radical SAM RNA-methylating enzymes comprises a large group of proteins that contains only a few functionally characterized members. Several enzymes in this family have been implicated in the regulation of translation and antibiotic susceptibility, emphasizing their significance in bacterial physiology and their relevance to human health. While few characterized enzymes have been shown to modify diverse RNA substrates, highlighting potentially broad substrate scope within the family, many enzymes in this class have no known substrates. The precise knowledge of RNA substrates and modification sites for uncharacterized family members is important for unraveling their biological function. Here, we describe a strategy for substrate identification that takes advantage of mechanism-based cross-linking between the enzyme and its RNA substrates, which we named individual-nucleotide-resolution cross-linking and immunoprecipitation combined with mutational profiling with sequencing (miCLIP-MaPseq). Identification of the position of the modification site is achieved using thermostable group II intron reverse transcriptase (TGIRT), which introduces a mismatch at the site of the cross-link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  2. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31(5):458–464. https://doi.org/10.1038/nbt.2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, Carr SA, Lander ES, Fink GR, Regev A (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155(6):1409–1421. https://doi.org/10.1016/j.cell.2013.10.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S, Wetzel C, Kreher J, Soin R, Creppe C, Limbach PA, Gueydan C, Kruys V, Brehm A, Minakhina S, Defrance M, Steward R, Fuks F (2016) RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351(6270):282–285. https://doi.org/10.1126/science.aac5253

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11(8):592–597. https://doi.org/10.1038/nchembio.1836

    Article  CAS  PubMed  Google Scholar 

  8. Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9(10):e110799. https://doi.org/10.1371/journal.pone.0110799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12(8):767–772. https://doi.org/10.1038/nmeth.3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. https://doi.org/10.1126/science.1090095

    Article  CAS  PubMed  Google Scholar 

  11. Hafner M, Lianoglou S, Tuschl T, Betel D (2012) Genome-wide identification of miRNA targets by PAR-CLIP. Methods 58(2):94–105. https://doi.org/10.1016/j.ymeth.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915. https://doi.org/10.1038/nsmb.1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haag S, Kretschmer J, Sloan KE, Bohnsack MT (2017) Crosslinking methods to identify RNA methyltransferase targets in vivo. Methods Mol Biol 1562:269–281. https://doi.org/10.1007/978-1-4939-6807-7_18

    Article  CAS  PubMed  Google Scholar 

  14. Zhang CL, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29(7):607–U686. https://doi.org/10.1038/nbt.1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, Frye M (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4(2):255–261. https://doi.org/10.1016/j.celrep.2013.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCusker KP, Medzihradszky KF, Shiver AL, Nichols RJ, Yan F, Maltby DA, Gross CA, Fujimori DG (2012) Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-L-methionine methyl synthase RlmN trapped by mutagenesis. J Am Chem Soc 134(43):18074–18081. https://doi.org/10.1021/ja307855d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grove TL, Benner JS, Radle MI, Ahlum JH, Landgraf BJ, Krebs C, Booker SJ (2011) A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science 332(6029):604–607. https://doi.org/10.1126/science.1200877

    Article  CAS  PubMed  Google Scholar 

  18. Grove TL, Livada J, Schwalm EL, Green MT, Booker SJ, Silakov A (2013) A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nat Chem Biol 9(7):422–427. https://doi.org/10.1038/nchembio.1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silakov A, Grove TL, Radle MI, Bauerle MR, Green MT, Rosenzweig AC, Boal AK, Booker SJ (2014) Characterization of a cross-linked protein-nucleic acid substrate radical in the reaction catalyzed by RlmN. J Am Chem Soc 136(23):8221–8228. https://doi.org/10.1021/ja410560p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ, Rosenzweig AC (2011) Structural basis for methyl transfer by a radical SAM enzyme. Science 332(6033):1089–1092. https://doi.org/10.1126/science.1205358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. King MY, Redman KL (2002) RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. Biochemistry 41(37):11218–11225

    Article  CAS  PubMed  Google Scholar 

  22. Yan F, LaMarre JM, Rohrich R, Wiesner J, Jomaa H, Mankin AS, Fujimori DG (2010) RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. J Am Chem Soc 132(11):3953–3964. https://doi.org/10.1021/ja910850y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan F, Fujimori DG (2011) RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Proc Natl Acad Sci U S A 108(10):3930–3934. https://doi.org/10.1073/pnas.1017781108

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stojkovic V, Chu T, Therizols G, Weinberg DE, Fujimori DG (2018) miCLIP-MaPseq, a substrate identification approach for radical SAM RNA methylating enzymes. J Am Chem Soc 140(23):7135–7143. https://doi.org/10.1021/jacs.8b02618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benitez-Paez A, Villarroya M, Armengod ME (2012) The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA 18(10):1783–1795. https://doi.org/10.1261/rna.033266.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fitzsimmons CM, Fujimori DG (2016) Determinants of tRNA recognition by the radical SAM enzyme RlmN. PLoS One 11(11):e0167298. https://doi.org/10.1371/journal.pone.0167298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G (2013) Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 8(1):176–189. https://doi.org/10.1038/nprot.2012.148

    Article  CAS  PubMed  Google Scholar 

  28. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Gruning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44(W1):W3–W10. https://doi.org/10.1093/nar/gkw343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, Galaxy T (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26(14):1783–1785. https://doi.org/10.1093/bioinformatics/btq281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anders S, Pyl PT, Huber W (2014) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  34. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomic viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boccaletto P, Machnicka MA, Purta E, Piątkowski P, Bagiński B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M (2017) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46(D1):D303–D307

    Article  PubMed Central  Google Scholar 

  36. Dunn JG, Weissman JS (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17(1):958. https://doi.org/10.1186/s12864-016-3278-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by UCSF Program for Breakthrough Biomedical Research (PBBR) Postdoctoral Grant (to V.S.), NIAID R01AI137270 (to D.G.F.), UCSF Program for Breakthrough Biomedical Research funded in part by the Sandler Foundation (to D.E.W.), and NIH Director’s Early Independence Award DP5OD017895 (to D.E.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danica Galonić Fujimori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stojković, V., Weinberg, D.E., Fujimori, D.G. (2021). miCLIP-MaPseq Identifies Substrates of Radical SAM RNA-Methylating Enzyme Using Mechanistic Cross-Linking and Mismatch Profiling. In: McMahon, M. (eds) RNA Modifications. Methods in Molecular Biology, vol 2298. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1374-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1374-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1373-3

  • Online ISBN: 978-1-0716-1374-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics