Skip to main content

RNA Post-Transcriptional Modification Mapping Data Analysis Using RNA Framework

  • Protocol
  • First Online:
RNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2298))

Abstract

RNA post-transcriptional modifications (PTMs) are progressively gaining relevance in the study of coding-independent functions of RNA. RNA PTMs act as dynamic regulators of several aspects of the RNA physiology, from translation to half-life. Rising interest is supported by the advance of high-throughput techniques enabling the detection of these modifications on a transcriptome-wide scale. To this end, here we illustrate the usefulness of RNA Framework, a comprehensive toolkit for the analysis of RNA PTM mapping experiments, by reanalyzing two published transcriptome-scale datasets of N1-methyladenosine (m1A) and pseudouridine (Ψ) mapping, based on two different experimental strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohn WE, Volkin E (1951) Nucleoside-5′-phosphates from ribonucleic acid. Nature 167:483–484. https://doi.org/10.1038/167483a0

    Article  CAS  Google Scholar 

  2. Behm-Ansmant I, Helm M, Motorin Y (2011) Use of specific chemical reagents for detection of modified nucleotides in RNA. J Nucleic Acids 2011:1–17. https://doi.org/10.1017/s1355838299981335

    Article  Google Scholar 

  3. Incarnato D, Oliviero S (2017) The RNA epistructurome: uncovering RNA function by studying structure and post-transcriptional modifications. Trends Biotechnol 35:318–333. https://doi.org/10.1016/j.tibtech.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Incarnato D, Morandi E, Simon LM, Oliviero S (2018) RNA framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res 46:e97–e97. https://doi.org/10.1093/nar/gky486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Segni AD, Salmon-Divon M, Clark WC, Zheng G, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D, Doré LC, Amariglio N, Rechavi G, He C (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446. https://doi.org/10.1038/nature16998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772. https://doi.org/10.1038/nmeth.3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou KI, Clark WC, Pan DW, Eckwahl MJ, Dai Q, Pan T (2018) Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing. RNA Biol 15:892–900. https://doi.org/10.1080/15476286.2018.1462654

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the University of Groningen (Groningen, Netherlands) and the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) to D.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Incarnato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manfredonia, I., Incarnato, D. (2021). RNA Post-Transcriptional Modification Mapping Data Analysis Using RNA Framework. In: McMahon, M. (eds) RNA Modifications. Methods in Molecular Biology, vol 2298. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1374-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1374-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1373-3

  • Online ISBN: 978-1-0716-1374-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics