Skip to main content

Quantification of eIF2α Phosphorylation Associated with Mitotic Catastrophe by Immunofluorescence Microscopy

  • Protocol
  • First Online:
Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2267))

Abstract

Mitotic catastrophe is an oncosuppressive mechanism that drives cells toward senescence or death when an error occurs during mitosis. Eukaryotic cells have developed adaptive signaling pathways to cope with stress. The phosphorylation on serine 51 of the eukaryotic translation initiation factor (eIF2α) is a highly conserved event in stress responses, including the one that is activated upon treatment with mitotic catastrophe inducing agents, such as microtubular poisons or actin blockers. The protocol described herein details a method to quantify the phosphorylation of eIF2α by high-throughput immunofluorescence microscopy. This method is useful to capture the ‘integrated stress response’, which is characterized by eIF2α phosphorylation in the context of mitotic catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnelly N, Gorman AM, Gupta S, Samali A (2013) The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 70(19):3493–3511. https://doi.org/10.1007/s00018-012-1252-6

    Article  CAS  PubMed  Google Scholar 

  2. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, Yuan J, Zitvogel L, Madeo F, Williams DB, Kroemer G (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590. https://doi.org/10.1038/emboj.2009.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  4. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392. https://doi.org/10.1038/nrm3115

    Article  CAS  PubMed  Google Scholar 

  5. Denisenko TV, Sorokina IV, Gogvadze V, Zhivotovsky B (2016) Mitotic catastrophe and cancer drug resistance: a link that must to be broken. Drug Resist Updat 24:1–12. https://doi.org/10.1016/j.drup.2015.11.002

    Article  PubMed  Google Scholar 

  6. Portugal J, Mansilla S, Bataller M (2010) Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des 16(1):69–78

    Article  CAS  Google Scholar 

  7. Ganguly A, Yang H, Sharma R, Patel KD, Cabral F (2012) The role of microtubules and their dynamics in cell migration. J Biol Chem 287(52):43359–43369. https://doi.org/10.1074/jbc.M112.423905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bezu L, Sauvat A, Humeau J, Gomes-da-Silva LC, Iribarren K, Forveille S, Garcia P, Zhao L, Liu P, Senovilla L, Kepp O, Kroemer G (2018) eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 25(8):1375–1393

    Article  CAS  Google Scholar 

  9. Coldwell MJ, Cowan JL, Vlasak M, Mead A, Willett M, Perry LS, Morley SJ (2013) Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: a reappraisal of translation initiation during mitosis. Cell Cycle 12(23):3615–3628. https://doi.org/10.4161/cc.26588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, Shen S, Marino G, Criollo A, Boileve A, Job B, Ladoire S, Ghiringhelli F, Sistigu A, Yamazaki T, Rello-Varona S, Locher C, Poirier-Colame V, Talbot M, Valent A, Berardinelli F, Antoccia A, Ciccosanti F, Fimia GM, Piacentini M, Fueyo A, Messina NL, Li M, Chan CJ, Sigl V, Pourcher G, Ruckenstuhl C, Carmona-Gutierrez D, Lazar V, Penninger JM, Madeo F, Lopez-Otin C, Smyth MJ, Zitvogel L, Castedo M, Kroemer G (2012) An immunosurveillance mechanism controls cancer cell ploidy. Science 337(6102):1678–1684. https://doi.org/10.1126/science.1224922

    Article  CAS  PubMed  Google Scholar 

  11. Senovilla L, Demont Y, Humeau J, Bloy N, Kroemer G (2017) Image cytofluorometry for the quantification of ploidy and endoplasmic reticulum stress in cancer cells. Methods Mol Biol 1524:53–64. https://doi.org/10.1007/978-1-4939-6603-5_3

    Article  CAS  PubMed  Google Scholar 

  12. Szaflarski W, Fay MM, Kedersha N, Zabel M, Anderson P, Ivanov P (2016) Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget 7(21):30307–30322. https://doi.org/10.18632/oncotarget.8728

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tanimukai H, Kanayama D, Omi T, Takeda M, Kudo T (2013) Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem Biophys Res Commun 437(1):151–155. https://doi.org/10.1016/j.bbrc.2013.06.057

    Article  CAS  PubMed  Google Scholar 

  14. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ (2004) Multidimensional drug profiling by automated microscopy. Science 306(5699):1194–1198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GK is supported by the Ligue contre le Cancer Comité de Charente-Maritime (équipe labelisée); Agence National de la Recherche (ANR)—Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a donation by Elior; the European Commission (ArtForce); the European Research Council (ERC); Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière; the Searave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). JH is supported by the Fondation Philanthropia. LB is supported by Bristol Myers Squibb Foundation for Research in Immuno-Oncology (BMS). PL is supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Humeau, J., Bezu, L., Kepp, O., Senovilla, L., Liu, P., Kroemer, G. (2021). Quantification of eIF2α Phosphorylation Associated with Mitotic Catastrophe by Immunofluorescence Microscopy. In: Manfredi, J.J. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 2267. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1217-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1217-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1216-3

  • Online ISBN: 978-1-0716-1217-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics