Skip to main content

High-Dimensional Phenotyping of Human Myeloid-Derived Suppressor Cells/Tumor-Associated Macrophages in Tissue by Mass Cytometry

  • Protocol
  • First Online:
Myeloid-Derived Suppressor Cells

Abstract

Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are heterogeneous cells that share myeloid markers and are not easily distinguishable in human tumors due to their lack of specific markers. These cells are a major player in the tumor microenvironment and are involved in the prognosis and physiopathology of various tumors. Here is presented a scheme to decipher these cells by mass cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807. https://doi.org/10.1016/j.intimp.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Youn J-I, Kumar V, Collazo M et al (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14:211–220. https://doi.org/10.1038/ni.2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Montero AJ, Diaz-Montero CM, Kyriakopoulos CE et al (2012) Myeloid-derived suppressor cells in Cancer patients: a clinical perspective. J Immunother 35:107–115. https://doi.org/10.1097/CJI.0b013e318242169f

    Article  PubMed  Google Scholar 

  4. Marini O, Spina C, Mimiola E et al (2016) Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget 7:27676–27688. https://doi.org/10.18632/oncotarget.8507

    Article  PubMed  PubMed Central  Google Scholar 

  5. Azzaoui I, Uhel F, Rossille D et al (2016) T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells. Blood 128:1081–1092. https://doi.org/10.1182/blood-2015-08-662783

    Article  CAS  PubMed  Google Scholar 

  6. Lin Y, Gustafson MP, Bulur PA et al (2011) Immunosuppressive CD14+HLA-DRlow/− monocytes in B-cell non-Hodgkin lymphoma. Blood 117:872–881. https://doi.org/10.1182/blood-2010-05-283820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jitschin R, Braun M, Büttner M et al (2014) CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 124:750–760. https://doi.org/10.1182/blood-2013-12-546416

    Article  CAS  PubMed  Google Scholar 

  8. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. https://doi.org/10.1016/j.it.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ugel S, De Sanctis F, Mandruzzato S, Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125:3365–3376. https://doi.org/10.1172/JCI80006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mantovani A, Marchesi F, Malesci A et al (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roussel M, Ferrell PB, Greenplate AR et al (2017) Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 102:437–447. https://doi.org/10.1189/jlb.5MA1116-457R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fowler NH, Cheah CY, Gascoyne RD et al (2016) Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica 101:531–540. https://doi.org/10.3324/haematol.2015.139493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roussel M, Irish JM, Ménard C et al (2017) Regulatory myeloid cells: an underexplored continent in B-cell lymphomas. Cancer Immunol Immunother 66:1103–1111. https://doi.org/10.1007/s00262-017-2036-5

    Article  CAS  PubMed  Google Scholar 

  14. Alcántara-Hernández M, Leylek R, Wagar LE et al (2017) High-dimensional phenotypic mapping of human dendritic cells reveals Interindividual variation and tissue specialization. Immunity 47:1037–1050.e6. https://doi.org/10.1016/j.immuni.2017.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. See P, Dutertre C-A, Chen J et al (2017) Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356:eaag3009. https://doi.org/10.1126/science.aag3009

    Article  CAS  PubMed  Google Scholar 

  16. Sander J, Schmidt SV, Cirovic B et al (2017) Cellular differentiation of human monocytes is regulated by time-dependent Interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47:1051–1066.e12. https://doi.org/10.1016/j.immuni.2017.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chevrier S, Levine JH, Zanotelli VRT et al (2017) An immune atlas of clear cell renal cell carcinoma. Cell 169:736–738.e18. https://doi.org/10.1016/j.cell.2017.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lavin Y, Kobayashi S, Leader A et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–757.e15. https://doi.org/10.1016/j.cell.2017.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krieg C, Nowicka M, Guglietta S et al (2018) High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 9:2579–2514. https://doi.org/10.1038/nm.4466

    Article  CAS  Google Scholar 

  20. Roussel M, Lhomme F, Roe CE et al (2020) Mass cytometry defines distinct immune profile in germinal center B-cell lymphomas. Cancer Immunol Immunother 69:407–420. https://doi.org/10.1007/s00262-019-02464-z

    Article  CAS  PubMed  Google Scholar 

  21. Nowicka M, Krieg C, Weber LM et al (2017) CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res 6:748–755. https://doi.org/10.12688/f1000research.11622.1

    Article  CAS  PubMed  Google Scholar 

  22. Diggins KE, Ferrell PB, Irish JM (2015) Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 82:55–63. https://doi.org/10.1016/j.ymeth.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimball AK, Oko LM, Bullock BL et al (2018) A beginner’s guide to analyzing and visualizing mass cytometry data. J Immunol 200:3–22. https://doi.org/10.4049/jimmunol.1701494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Song W, Wong BY et al (2019) A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol 20:297. https://doi.org/10.1186/s13059-019-1917-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Finotello F, Rieder D, Hackl H, Trajanoski Z (2019) Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet 20:724–746. https://doi.org/10.1038/s41576-019-0166-7

    Article  CAS  PubMed  Google Scholar 

  26. van Unen V, Höllt T, Pezzotti N et al (2017) Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat Commun 8:1740. https://doi.org/10.1038/s41467-017-01689-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Juliette Ferrant is recipient of a fellowship from the FHU CAMIn (Federation Hospitalo-Universitaire Cancer Microenvironnement et Innovation). Guillaume Manson and Steve Genebrier were funded by a Master 2 fellowship from the Fondation ARC. This work was supported by grants from the Agence Nationale de la Recherche (ANR-17-CE15-0015 StroMAC) and Fondation ARC (PGA1 RF20190208534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Roussel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferrant, J. et al. (2021). High-Dimensional Phenotyping of Human Myeloid-Derived Suppressor Cells/Tumor-Associated Macrophages in Tissue by Mass Cytometry. In: Brandau, S., Dorhoi, A. (eds) Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, vol 2236. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1060-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1060-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1059-6

  • Online ISBN: 978-1-0716-1060-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics