Skip to main content

Intravital 2-Photon Microscopy of Diverse Cell Types in the Murine Tibia

  • Protocol
  • First Online:
Myeloid-Derived Suppressor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2236))

Abstract

Intravital imaging allows the visualization of fluorescently labeled structures like cells, blood flow, and pathogens in a living organism. Nowadays, numerous methods for imaging in several organs are available. In this chapter, we present a method for intravital 2-photon microscopy of the murine tibial bone marrow. It enables the observation of hematopoietic cells including cells of the innate and adaptive immune system under physiological conditions. Motility analyses within this complex environment led to insights into their migratory potential as well as their interactions with other cells or blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Göppert‐Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9:273–295

    Article  Google Scholar 

  2. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76. https://doi.org/10.1126/science.2321027

    Article  CAS  PubMed  Google Scholar 

  3. Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336(6089):1676–1681. https://doi.org/10.1126/science.1221063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147(5):983–991. https://doi.org/10.1016/j.cell.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Germain RN, Miller MJ, Dustin ML, Nussenzweig MC (2006) Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6(7):497–507. https://doi.org/10.1038/nri1884

    Article  CAS  PubMed  Google Scholar 

  6. Phan TG, Bullen A (2010) Practical intravital two-photon microscopy for immunological research: faster, brighter, deeper. Immunol Cell Biol 88(4):438–444. https://doi.org/10.1038/icb.2009.116

    Article  PubMed  Google Scholar 

  7. Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873. https://doi.org/10.1126/science.1070051

    Article  CAS  PubMed  Google Scholar 

  8. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5(12):1243–1250. https://doi.org/10.1038/ni1139

    Article  CAS  PubMed  Google Scholar 

  9. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159. https://doi.org/10.1038/nature02238

    Article  CAS  PubMed  Google Scholar 

  10. Marques PE, Oliveira AG, Chang L, Paula-Neto HA, Menezes GB (2015) Understanding liver immunology using intravital microscopy. J Hepatol 63(3):733–742. https://doi.org/10.1016/j.jhep.2015.05.027

    Article  PubMed  Google Scholar 

  11. Toiyama Y, Mizoguchi A, Okugawa Y, Koike Y, Morimoto Y, Araki T, Uchida K, Tanaka K, Nakashima H, Hibi M, Kimura K, Inoue Y, Miki C, Kusunoki M (2010) Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol 45(5):544–553. https://doi.org/10.1007/s00535-009-0187-7

    Article  PubMed  Google Scholar 

  12. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2):271–284. https://doi.org/10.1016/j.immuni.2007.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, Pless R, Gelman AE, Krupnick AS, Miller MJ (2010) In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A 107(42):18073–18078. https://doi.org/10.1073/pnas.1008737107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF (2011) Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8(1):91–96. https://doi.org/10.1038/nmeth.1543

    Article  CAS  PubMed  Google Scholar 

  15. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, Konig R, Hutten H, Etemire E, Mann L, Klingberg A, Fischer T, Gortler MW, Heinze HJ, Reichardt P, Schraven B, Hermann DM, Reymann KG, Gunzer M (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277. https://doi.org/10.1007/s00401-014-1355-2

    Article  CAS  PubMed  Google Scholar 

  16. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–165. https://doi.org/10.1038/385161a0

    Article  CAS  PubMed  Google Scholar 

  17. Otto L, Zelinskyy G, Schuster M, Dittmer U, Gunzer M (2018) Imaging of cytotoxic antiviral immunity while considering the 3R principle of animal research. J Mol Med (Berl) 96(3–4):349–360. https://doi.org/10.1007/s00109-018-1628-7

    Article  CAS  Google Scholar 

  18. Zehentmeier S, Roth K, Cseresnyes Z, Sercan O, Horn K, Niesner RA, Chang HD, Radbruch A, Hauser AE (2014) Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. Eur J Immunol 44(8):2306–2317. https://doi.org/10.1002/eji.201344313

    Article  CAS  PubMed  Google Scholar 

  19. Kohler A, Geiger H, Gunzer M (2011) Imaging hematopoietic stem cells in the marrow of long bones in vivo. Methods Mol Biol 750:215–224. https://doi.org/10.1007/978-1-61779-145-1_15

    Article  CAS  PubMed  Google Scholar 

  20. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH (1998) Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 188(3):465–474. https://doi.org/10.1084/jem.188.3.465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457(7225):92–96. https://doi.org/10.1038/nature07434

    Article  CAS  PubMed  Google Scholar 

  22. Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE Jr, Shivdasani RA, von Andrian UH (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770. https://doi.org/10.1126/science.1146304

    Article  CAS  PubMed  Google Scholar 

  23. Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458(7237):524–528. https://doi.org/10.1038/nature07713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ho MS, Medcalf RL, Livesey SA, Traianedes K (2015) The dynamics of adult haematopoiesis in the bone and bone marrow environment. Br J Haematol 170(4):472–486. https://doi.org/10.1111/bjh.13445

    Article  PubMed  Google Scholar 

  25. Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20(5):303–320. https://doi.org/10.1038/s41580-019-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gruneboom A, Hawwari I, Weidner D, Culemann S, Muller S, Henneberg S, Brenzel A, Merz S, Bornemann L, Zec K, Wuelling M, Kling L, Hasenberg M, Voortmann S, Lang S, Baum W, Ohs A, Kraff O, Quick HH, Jager M, Landgraeber S, Dudda M, Danuser R, Stein JV, Rohde M, Gelse K, Garbe AI, Adamczyk A, Westendorf AM, Hoffmann D, Christiansen S, Engel DR, Vortkamp A, Kronke G, Herrmann M, Kamradt T, Schett G, Hasenberg A, Gunzer M (2019) A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab 1(2):236–250. https://doi.org/10.1038/s42255-018-0016-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328. https://doi.org/10.1038/nature17624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hassanshahi M, Hassanshahi A, Khabbazi S, Su YW, Xian CJ (2019) Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit Rev Oncol Hematol 137:43–56. https://doi.org/10.1016/j.critrevonc.2019.01.024

    Article  PubMed  Google Scholar 

  29. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17(9):573–590. https://doi.org/10.1038/nri.2017.53

    Article  CAS  PubMed  Google Scholar 

  30. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130. https://doi.org/10.1038/nature15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kohler A, Schmithorst V, Filippi MD, Ryan MA, Daria D, Gunzer M, Geiger H (2009) Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114(2):290–298. https://doi.org/10.1182/blood-2008-12-195644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kohler A, De Filippo K, Hasenberg M, van den Brandt C, Nye E, Hosking MP, Lane TE, Mann L, Ransohoff RM, Hauser AE, Winter O, Schraven B, Geiger H, Hogg N, Gunzer M (2011) G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 117(16):4349–4357. https://doi.org/10.1182/blood-2010-09-308387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasenberg A, Hasenberg M, Mann L, Neumann F, Borkenstein L, Stecher M, Kraus A, Engel DR, Klingberg A, Seddigh P, Abdullah Z, Klebow S, Engelmann S, Reinhold A, Brandau S, Seeling M, Waisman A, Schraven B, Gothert JR, Nimmerjahn F, Gunzer M (2015) Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods 12(5):445–452. https://doi.org/10.1038/nmeth.3322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—GU769/13-1 (KFO 337), GU769/10-1, GU769/11-1 and GU769/15-1 (FOR 2879) to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Hasenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hasenberg, A., Otto, L., Gunzer, M. (2021). Intravital 2-Photon Microscopy of Diverse Cell Types in the Murine Tibia. In: Brandau, S., Dorhoi, A. (eds) Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, vol 2236. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1060-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1060-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1059-6

  • Online ISBN: 978-1-0716-1060-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics